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Abstract

Implicit regularization, the inductive bias of a learning algorithm to prefer simpler solutions over
more complex ones, is a topic of huge interest in statistic modeling and modern machine learning. A
prominent approach for its analysis is to relate it to the corresponding explicit regularization scheme,
yet a unifying framework to formalize this connection has been absent. We introduce such a framework,
using the so-called basic inequality, a key tool that connects the dynamics of an optimization algorithm
to its explicit regularization counterpart. While related inequalities are fundamental in optimization
theory, we isolate and highlight a specific form as a simple and versatile tool, which we believe has been
underappreciated. Specifically, for a given iterative algorithm, a basic inequality provides an upper bound
on the objective value at its last iterate, f(θT ), with respect to an arbitrary reference point z. This bound
is characterized by two factors: a geometry-aware distance between the initialization, the last iterate θT ,
and the reference point z; and accumulated step sizes, representing total elapsed time of the algorithm.
We demonstrate the utility of this framework in both optimization and statistical perspective, in the
application of training dynamics, prediction risk of statistical models, and randomized model selection.
We supplement our theoretical results with experiments on generalized linear models with gradient descent
and exponential gradient descent.

1 Introduction
This paper introduces basic inequalities for iterative optimization algorithms, a framework that connects the
implicit and explicit regularization. Given an optimization problem, minθ f(θ), our focus is on

θT and θ̂λ,

where θT is the last iterate of an algorithm, and θ̂λ = argminθ f(θ) + λg(θ) is an explicitly regularized solution
with a penalty g(·) and regularization parameter λ ≥ 0.

The concept of implicit regularization (Neyshabur et al., 2014), where the optimization algorithm itself
implicitly induces the bias of the model, has been a persistent theme in statistics and optimization literature.
This is a specific instance of broader inductive bias of models (Baxter, 2000), which describes model capacity
and generalization. A well-known example of implicit regularization is early stopping of iterative algorithms,
which appeared in the neural network community (Prechelt, 2002) and later more formally analyzed in various
statistical context (Zhang and Yu, 2005; Yao et al., 2007; Raskutti et al., 2014). Implicit regularization is
distinct from explicit regularization, a classical approach of adding a penalty term to the loss function, whose
statistical properties have been studied more in the literature.

One major research direction has been to understand implicit regularization by connecting it to explicit
regularization (Lemaire, 1996; Gunasekar et al., 2018). While connections have been usually established with
algorithm- or loss-specific context (Suggala et al., 2018; Ji and Telgarsky, 2019; Ali et al., 2019), a general
and unifying framework is absent. This paper proposes that basic inequalities can serve as this framework.

For a given algorithm, a basic inequality bounds the objective value at the last iterate, f(θT ) relative
to any reference point z. This bound is governed by two factors: a geometry-aware distance between the
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initialization, last iterates θT , and z; and accumulated step sizes, which represents total elapsed time of the
algorithm. For example, gradient descent with initialization at the origin in Rd and a constant step size η has
the following basic inequality:

f(θT )− f(z) ≤
1

2ηT

(
∥z∥22 − ∥θT − z∥22

)
.

The utility of this inequality is its flexibility of strategically choosing z. Relationships akin to our basic
inequalities are foundational in the convergence analysis of iterative algorithms (Nesterov, 2003; Nemirovski
et al., 2009; Reddi et al., 2019) and are implicit in the analyses of several works on implicit regularization (Ji
and Telgarsky, 2019; Ji et al., 2020; Wu et al., 2024, 2025). Our contribution is to highlight these inequalities
and demonstrate their broad utility for both optimization and statistical analysis of implicit regularization.

Summary of Contributions. Our contributions are as follows.

• We introduce basic inequalities for the last iterate of iterative algorithms (Section 2 and 7), including
gradient descnet and mirror descent. While related inequalities are fundamental in optimization theory,
we present and highlight specific forms that provide a simple yet general framework for connecting
implicit and explicit regularization. The form we present deserves greater attention, as they can be
used to more universal applications.

• We demonstrate the utility of basic inequalities through several applications.

– Training dynamics (Section 3). We bound the combined loss and penalty term of the iterates by
explicit regularization estimators, and analyze the path of the iterates in spirit of Lemaire (1996).

– Generalized linear models (Section 4 and 5). We derive high-probability prediction risk bounds for
early-stopped gradient descent and exponentiated gradient descent, where the rates are matched
with their explicit regularization counterparts, ridge and KL-divergence regularization, respectively.

– Randomized model selection (Section 6). We derive excess risk bounds for random model selection
problem with either using exponentiated gradient descent or KL-divergence regularization.

• We conduct simulation experiments across linear, logistic, and Poission regressions in both under-
parametrized and overparamterized regimes (Section 8). The result back up our theory, showing a
strong empirical similarity between implicit and explicit regularizations in their training dynamics,
prediction risk curves, and solution paths.

Related Work. Connecting implicit regularization to corresponding well-understood explicit regularization
has been studied in the literature for long time, includes characterizing the limit points and solution paths of
algorithms. For overparametrized linear regression, gradient descent is known to converge to the min-L2 norm
solution (Lemaire, 1996). It is generalized to mirror descent, which converges to min-Bregman-divergence
solution (Gunasekar et al., 2018; Azizan and Hassibi, 2019). In some cases, more direct equivalence of the
entire solution path can be established, for instances, Least Angle Regression (LARS) algorithm generates
the lasso path (Efron et al., 2004). Regarding an L2-penalty, more recent work has focused on quantifying
the L2-distance between implicitly and explicitly regularized estimators for strongly convex loss functions
(Suggala et al., 2018), while for linear regression, more tighter comparison is possible (Ali et al., 2019).

For classification problems, implicit regularization often becomes a max-margin solution. For instance,
AdaBoost with an infinitesimal step size converges to L1-max-margin binary classifier (Zhang and Yu, 2005).
In logistic regression with linearly separable data, gradient descent converges in direction to the max-margin
solution (Soudry et al., 2018; Ji and Telgarsky, 2019), with analogous results for mirror descent (Sun et al.,
2023). For a broader loss class, when the risk does not achieve its infimum, the gradient descent path and a
corresponding explicit regularization path converge to the same direction (Ji et al., 2020). Recent work on
logistic regression has investigated the phase transitions of gradient descent with large step sizes (Wu et al.,
2024) and the existence of beneficial early stopping time with respect to excess risk (Wu et al., 2025).

The analysis of explicit regularization is itself a mature field. For ridge regression, the out-of-sample and
in-sample prediction risk bounds has been precisely characterized due to its closed form solution (Ali et al.,
2019), with sharp asymptotic results available from Marchenko-Pastur theorem in random matrix theory
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(Dobriban and Wager, 2018; Hastie et al., 2022). For L2-regularized logistic regression, the self-concordance
property of the loss has been used to prediction risk bounds (Bach, 2010). For lasso (Tibshirani, 1996),
which uses an L1-penalty, a key observation for non-asymptotic analysis is the basic inequality (Bühlmann
and Van De Geer, 2011), derived from the estimator’s zero-order optimality condition. For a squared loss
f(θ) = (1/2n)∥Y −Xθ∥22 and the lasso estimator θ̂λ,

1

2n

∥∥X(θ̂λ − θ)
∥∥2
2
≤ 1

n

〈
Y −Xθ,X(θ̂λ − β)

〉
+ λ

(
∥θ∥1 − ∥θ̂λ∥1

)
.

Regarding the in-sample risk of θ̂λ, this inequality leads to the slow rate of O(
√

(log d)/n), and a fast rate of
O((log d)/n) under additional assumptions on X (van de Geer and Bühlmann, 2009; Bühlmann and Van
De Geer, 2011). We present the above inequality to emphasize its structural similarity to the basic inequalities
for iterative algorithms that we introduce.

The use of Kullback-Leibler (KL) divergence penalty as an explicit regularization in statistical learning is
not as popular as ℓp regularization. Nevertheless, it serves as a powerful tool for certain tasks, especially
those involving probability distributions over a collection of candidate models, and is a cornerstone of the
PAC-Bayes framework (Alquier, 2024). Its two prominent applications are model aggregation (Wolpert, 1992;
Breiman, 1996) and randomized model selection (Leung and Barron, 2006; Zhang, 2006), where we seek an
optimal weights to predictors from a given base models. Model aggregation uses a convex combination of
the base predictors as the final predictor, according to the learned probability vector. On the other hand,
in randomized model selection, a single model is randomly drawn according to the probability vector for
prediction. In both tasks, KL penalty regularizes the probability vector by penalizing its deviation from a
prior distribution, which is typically chosen to be uniform.

2 Basic inequalities for iterative optimization algorithm
This section introduces a set of basic inequalities. While similar relationships are used in the convergence rate
analysis in the optimization literature as mentioned in the introduction, their broad utility as a standalone
framework has been largely overlooked. We believe these inequalities deserve greater attention as simple yet
fundamental framework for implicit regularization analysis, as demonstrated in the sections that follow.

Definitions and notations. We introduce definition and notation being used in the paper. For u, v ∈ Rd,
their inner product is ⟨u, v⟩ := u⊤v. For a set S ⊆ Rd, its interior and boundary are denoted by int(S) and
∂S. The size of a set S is denoted as |S|. A d-dimensional ball of radius r > 0 centered at p ∈ Rd is defined
as Bd(r; p) := {θ ∈ Rd : ∥θ − p∥2 ≤ r}, and Bd(r) := Bd(r; 0). We denote N0 = {0} ∪ N = {0, 1, 2, . . .}, and
[n] := {1, 2, . . . , n} for n ∈ N.

A function f : Ω→ R is convex if f(αx+ (1− α)y) ≤ αf(x) + (1− α)f(y) for any x, y ∈ Ω and α ∈ [0, 1].
It is strictly convex if the inequality holds strictly for x ̸= y and α ∈ (0, 1). The subgradient of a convex
function f at x is denoted by ∂f(x). A function f is essentially strictly convex if it is strictly convex on
all convex subsets of {x : ∂f(x) ̸= ∅}. A function f : Ω ⊆ Rd → R is essentially smooth if it satisfies three
conditions: (i) int(Ω) ̸= ∅; (ii) f is differentiable on int(Ω); and (iii) limi→∞ ∥∇f(xi)∥2 =∞ for any sequence
{xi}∞i=1 ⊂ Ω converging to a point x ∈ ∂Ω. A function f is of Legendre type if it is both essentially smooth
and essentially strictly convex (Rockafellar, 1997). A differentiable function f is called α-strongly convex with
respect to a norm ∥ · ∥ with some α > 0, if f(y) ≥ f(x) + ⟨∇f(x), y − x⟩+ α

2 ∥x− y∥
2. For a differentiable

function f : Rd → R, it is L-smooth with respect to a norm ∥ · ∥ if the gradient ∇f : Rd → Rd is L-Lipschitz
with respect to ∥ · ∥ and its dual norm ∥ · ∥∗ with some L > 0, i.e., ∥∇f(x)−∇f(y)∥∗ ≤ L∥x− y∥ for any
x, y ∈ Rd. When the norm is not specified, the Euclidean norm ∥ · ∥2 is assumed.

A random variable Z is sub-Gaussian with parameter σ2, if E[exp(α(Z − E[Z]))] ≤ exp(α2σ2/2) for
all α ∈ R, denoted Z ∼ sG(σ2). For a matrix X ∈ Rn×d, we define the empirical covariance matrix as
Σ̂X := 1

nX
⊤X ∈ Rd×d, often denoted Σ̂ when X is clear from context.

2.1 Basic inequality for early-stopped gradient descent
Gradient descent (Euler, 1792; Cauchy et al., 1847) is one of the most widely used algorithms for both convex
and non-convex optimization problems. Given a differentiable loss function f : Rd → R, the gradient descent
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algorithm with an initialization θ0 ∈ Rd and step sizes (ηt)
∞
t=0 generates iterates according to

θt+1 = θt − ηt∇f(θt). (1)

Our first basic inequality, given below, describes a remarkably simple yet powerful statement about the
objective value of the last iterate θT ∈ Rd of gradient descent to any reference point z ∈ Rd. This inequality
will be a key for understanding how early stopping in gradient descent can act as a form or regularization, a
theme we will explore in later sections.

Assumption As1 (Gradient descent setting). The function f : Rd → R is convex, differentiable, and
L-smooth for some L > 0.

Theorem 1 (Basic inequality for gradient descent). Under Assumption As1, consider gradient descent with
iterates (1) and step sizes ηt ∈ (0, 1/L]. Then, for any reference point z ∈ Rd and any stopping time T ∈ N,
it holds that

f(θT )− f(z) ≤
1

2
∑T−1

t=0 ηt

(
∥θ0 − z∥22 − ∥θT − z∥22

)
.

In particular, for a constant step size ηt = η, this simplifies to

f(θT )− f(z) ≤
1

2ηT

(
∥θ0 − z∥22 − ∥θT − z∥22

)
.

Proof of Theorem 1. The proof proceeds in three steps.
Step 1: Bounding the proximity difference at t and t+ 1. We measure proximity via the Euclidean distance.
For any z ∈ Rd,

∥θt − z∥22 − ∥θt+1 − z∥22 = ∥θt − z∥22 − ∥θt − ηt∇f(θt)− z∥22 = 2ηt⟨∇f(θt), θt − z⟩ − η2t ∥∇f(θt)∥22.

Step 2: Bounding the criterion difference f(θt)− f(z). By convexity of f , f(θt)− f(z) ≤ ⟨∇f(θt), θt − z⟩.
Substituting this into result from Step 1,

2ηt(f(θt)− f(z))− η2t ∥∇f(θt)∥22 ≤ ∥θt − z∥22 − ∥θt+1 − z∥22.

The L-smoothness of f and ηt ∈ (0, 1/L] guarantee, via the descent lemma (Lemma A1), that

f(θt+1) ≤ f(θt)− ηt
(
1− L

2
ηt
)
∥∇f(θt)∥22 ≤ f(θt)−

1

2
ηt∥∇f(θt)∥22.

This ensures f(θT ) ≤ f(θt) − 1
2ηt∥∇f(θt)∥

2
2 for any t > 0. Using this to lower bound f(θt) − f(z) by

f(θT )− f(z),
2ηt(f(θT )− f(z)) ≤ ∥θt − z∥22 − ∥θt+1 − z∥22.

Step 3: Aggregating bounds over iterations. Summing the result of Step 2 over t < T gives a telescoping sum:

2
∑T−1

t=0
ηt(f(θT )− f(z)) ≤ ∥θ0 − z∥22 − ∥θT − z∥22,

which concludes the proof.

2.2 Basic inequality for early-stopped mirror descent
Mirror descent (Nemirovskij and Yudin, 1983; Beck and Teboulle, 2003) extends gradient descent to non-
Euclidean geometries, using a Bregman divergence to measure proximity. This generalization is crucial for
problems with specific domain and geometric constraints, for instances, the probability simplex and the
distance between two probability measures. We develop a basic inequality for mirror descent that shares a
structural resemblance with the one from gradient descent, as can be anticipated from their relationship.
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Assumption As2 (Mirror descent setting). Let K and Ω be closed convex sets in Rd such that K ⊆ Ω, and
their interiors are not empty. A function f : Ω → R is convex on K, and it is differentiable on int(Ω). A
function ϕ : Ω→ Rd is of Legendre type, and it is continuous on Ω.

The Bregman divergence induced by ϕ, for u, v ∈ Ω, is

Dϕ(u, v) := ϕ(u)− ϕ(v)− ⟨∇ϕ(v), u− v⟩.

This is only well-defined if and only if v ∈ int(Ω) since ϕ is of Legendre type (Lemma A2). Given initialization
θ0 ∈ K ∩ int(Ω) and the step sizes (ηt)

∞
t=0, mirror descent generates iterates as

θt+1 := argmin
θ∈K

{ηt⟨∇f(θt), θ⟩+Dϕ(θ, θt)} . (2)

This update guarantees that θt ∈ K ∩ int(Ω) for any t ≥ 0 (Lemma A4), keeping Dϕ(·, θt) well-defined.

Assumption As3 (Additional mirror descent setting). The function ϕ is α-strongly convex for α > 0 with
respect to a norm ∥ · ∥ on K. The function f is L-smooth with respect to ∥ · ∥ for L > 0 on K ∩ int(Ω).

Theorem 2 (Basic inequality for mirror descent). Under Assumptions As2 and As3, consider mirror descent
with iterates (2) and step sizes ηt ∈ (0, α/L]. Then, for any reference point z ∈ K and stopping time T ∈ N,
it holds that

f(θT )− f(z) ≤
1∑T−1

t=0 ηt

(
Dϕ(z, θ0)−Dϕ(z, θT )

)
.

In particular, for a constant step size ηt = η, this simplifies to

f(θT )− f(z) ≤
1

ηT

(
Dϕ(z, θ0)−Dϕ(z, θT )

)
.

Proof of Theorem 2. The proof parallels that of the gradient descent case, but leverages properties of the
Bregman divergence.
Step 1: Bounding the proximity difference at t and t+ 1. We measure proximity via the Bregman divergence.
The well-known “three-point identity” for Bregman divergence (see Lemma A5) states that

ηt⟨∇f(θt), θt+1 − z⟩ ≤ Dϕ(z, θt)−Dϕ(z, θt+1)−Dϕ(θt+1, θt).

Step 2: Bounding the criterion difference f(θt)− f(z). Convexity of f on K implies that

f(θt)− f(z) ≤ ⟨∇f(θt), θt − z⟩ = ⟨∇f(θt), θt − θt+1⟩+ ⟨∇f(θt), θt+1 − z⟩.

Multiplying both sides by ηt and using Step 1,

ηt

(
f(θt)− f(z)

)
≤ ηt⟨∇f(θt), θt − θt+1⟩+Dϕ(z, θt)−Dϕ(z, θt+1)−Dϕ(θt+1, θt).

α-strong convexity of ϕ implies that Dϕ(θt+1, θt) ≥ (α/2)∥θt+1 − θt∥2 (Lemma A3), and L-smoothness of f
yields f(θt+1) ≤ f(θt)+ ⟨∇f(θt), θt+1−θt⟩+(L/2)∥θt+1−θt∥2. Thus, we can upper bound ηt(f(θt+1)−f(z))
as the following:

ηt

(
f(θt+1)− f(z)

)
≤ Dϕ(z, θt)−Dϕ(z, θt+1) +

(Lηt − α
2

)
∥θt+1 − θt∥2 ≤ Dϕ(z, θt)−Dϕ(z, θt+1),

where ηt ≤ α/L is used in the last inequality. The descent lemma for mirror descent (Lemma A7) shows
f(θt) is non-increasing, we have

ηt

(
f(θT )− f(z)

)
≤ Dϕ(z, θt)−Dϕ(z, θt+1).

Step 3: Aggregating bounds over iterations. Summing the result of Step 2 over t < T gives a telescoping sum:∑T−1

t=0
ηt

(
f(θT )− f(z)

)
≤ Dϕ(z, θ0)−Dϕ(z, θT ),

which concludes the proof.
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Theorem 2 indeed implies Theorem 1, its gradient descent counterpart, as a special case. Specifically, by
selecting ϕ(v) = 1

2∥v∥
2
2, for which the Bregman divergence Dϕ(u, v) =

1
2∥u− v∥

2
2 and the strong convexity

parameter α = 1, the mirror descent iterates and basic inequality precisely reduce to those of gradient descent.
Despite this direct relationship, presenting the two theorems separately, as we have done, highlights

distinct operational mechanics. The derivation for gradient descent directly leverages the natural pairing of
its updates with the inner product and Euclidean norm: ⟨∇f(θt), θt+1 − θt⟩ = ηt∥∇f(θt)∥22. In contrast, the
analysis of mirror descent with an arbitrary norm requires more nuanced arguments to navigate the interplay
between the chosen geometry and the update rule of mirror descent. Comparing gradient and mirror decent
pathways provides a richer picture of the two algorithms.

The basic inequalities for gradient descent and mirror descent in Theorem 1 and 2 are cornerstones of this
paper, which lead us to the connection between implicit and explicit regularization in the remaining sections.

3 Application: Training dynamics
The basic inequalities can provide insights into the algorithm’s training dynamics. In this section, we will
observe the evolution of the training loss and the distance between iterates and the solution set, and the limit
points of the iterates. Corollary 1 and 2, whose part (b)-(e) are motivated by Corollary 2.2 in Lemaire (1996),
reveal the connection to explicit regularization and clarify convergence towards specific solution under certain
conditions. As before, gradient descent results are the special cases of those in mirror descent, but comparing
their proofs highlights the underlying geometries of the algorithms. The proofs are provided in-text, while
part (d)-(e) have more details in Appendix B.

Corollary 1 (Gradient descent). Under Assumption As1, consider the gradient descent updates in (1) with
step sizes ηt ∈ (0, 1/L].

(a) (Training loss bound with explicit ridge regularization.) For any and T ∈ N,

f(θT ) +
1/4∑T−1
t=0 ηt

∥θ0 − θT ∥22 ≤ min
z∈Rd

[
f(z) +

1∑T−1
t=0 ηt

∥θ0 − z∥22

]
.

(b) (Asymptotic training loss.) Define inf f := infθ∈Rd f(θ), which may be negatively infinite. If
∑∞

t=0 ηt =
∞, then

lim
t→∞

f(θt) = inf f.

(c) (Non-increasing distance to solution set.) Define the solution set S := {θ∗ ∈ Rd : f(θ∗) = infθ∈Rd f(θ)},
which is closed and convex, but possibly empty. Let DistS(u) := mins∈S ∥u− s∥2 denotes the distance
from u to S. If S ̸= ∅, then

∀s ∈ S, {∥θt − s∥2}∞t=1 is non-increasing, and thus, {DistS(θt)}∞t=1 is non-increasing.

(d) (Limit of updates.) If S ̸= ∅ and
∑∞

t=0 ηt =∞, then

lim
t→∞

θt = θ∞ ∈ S.

Moreover, defining ProjS(u) := argmins∈S ∥u− s∥2 as the projection of u onto S, we have

∥θ∞ − ProjS(θ0)∥2 ≤ DistS(θ0) and thus ∥θ∞ − θ0∥2 ≤ 2DistS(θ0).

(e) (Minimum-norm solution.) If S is a non-empty affine subspace and
∑∞

t=0 ηt =∞, then

θ∞ = ProjS(θ0).
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Proof of Corollary 1. (a). By Young’s inequality, 2ab ≤ ca2 + b2/c for any c > 0, we get

∥θ0 − z∥22 − ∥θT − z∥22 =2⟨θ0 − z, θ0 − θT ⟩ − ∥θ0 − θT ∥22
≤ 2∥θ0 − z∥2∥θ0 − θT ∥2 − ∥θ0 − θT ∥22

≤ 2∥θ0 − z∥22 −
1

2
∥θT − θ0∥22.

Using this to upper bound the basic inequality from Theorem 1, we obtain that

f(θT )− f(z) ≤
1

2
∑T−1

t=0 ηt

(
∥θ0 − z∥22 − ∥θT − z∥22

)
≤ 1

2
∑T−1

t=0 ηt

(
2∥θ0 − z∥22 −

1

2
∥θT − θ0∥22

)
for any z ∈ Rd, completing the proof.

(b). Theorem 1 implies that for any z ∈ Rd, f(θT ) ≤ f(z) + ∥θ0− z∥22/(2
∑T−1

t=0 ηt). Given that
∑∞

t=0 ηt =∞,
taking the limit superior yields lim supT→∞ f(θT ) ≤ f(z). Since this holds for any z, we get lim supT→∞ f(θT ) ≤
inf f . Combined with the trivial inequality inf f ≤ f(θT ), we conclude that limT→∞ f(θT ) = inf f .

(c). We can write S = f−1({inf f}). Assume S is non-empty, which implies inf f is finite. Since f is convex
and continuous, S is a closed convex set. Consequently, the distance function DistS(u) is well-defined. By
Theorem 1, we know that

∥θT − s∥22 ≤ ∥θ0 − s∥22 + 2

T−1∑
t=0

ηt(f(s)− f(θT ))

for any s ∈ S and T ∈ N. Since s ∈ S, we have f(s) = inf f ≤ f(θT ), making the summation term
non-positive. Thus, ∥θT − s∥22 ≤ ∥θ0 − s∥22. This argument applies more generally: starting the gradient
descent process at iterate θτ and running for ω − τ steps (where ω ≥ τ) yields ∥θω − s∥22 ≤ ∥θτ − s∥22. As
this holds for any s ∈ S, taking the infimum over s on both sides gives DistS(θω) ≤ DistS(θτ ). The sequence
{DistS(θt)}∞t=0 is therefore non-increasing.

(d). (Proof sketch.) Choose any s ∈ S. Due to the decreasing nature of ∥θt−s∥22 from part (c), there is a limit
point θ∞ as of a subsequence {θti}∞i=0. Then θ∞ ∈ S due to part (b). Thus, ∥θt − θ∞∥22 is also decreasing,
which concludes θt → θ∞ as t→∞.

(e). (Proof sketch.) Let P := ProjS(θ0) and v = P−θ∞. For any c ≥ 0, define βc := P+c·DistS(θ0)·(v/∥v∥2) ∈
S. Since βc ∈ S, due to part (c) and (d), we must have ∥θ∞ − βc∥2 ≤ ∥θ0 − βc∥2. Based on the collinear
structure of three points θ∞, P , and βc, observe that

∥v∥2 + c ·DistS(θ0) ≤
√
1 + c2 ·DistS(θ0).

As c→∞, the term
√
1 + c2 − c→ 0. Therefore, we have ∥v∥2 ≤ 0, implying v = 0, and thus, P = θ∞.

Before we present the results for mirror descent, let’s look into Corollary 1 more deeply. Part (a) shows the
resemblance of the structure of explicit regularization, yet their parallel is not exact. An explicitly regularized
estimator, θ̂, is a minimizer of a composite objective f(θ) + λ∥θ0 − θ∥22 for λ > 0. By its definition,

f(θ̂) + λ∥θ0 − θ̂∥22 ≤ min
z∈Rd

[
f(z) + λ∥θ0 − z∥22

]
.

However, the bound from part (a) has a slightly different form, since the effective coefficients for the penalty
term on the left- and right-hand sides have a fixed 1:4 ratio. Despite these distinctions, part (a) compellingly
demonstrates an algorithm-inherent regularization effect.

Part (b)-(d) describe behaviors of f(θT ) and ∥θ0 − θT ∥2 separately, while part (a) jointly treated them.
Part (b) establishes the consistency of the algorithm. Part (c) addresses the stability of the iterates with
respect to the solution set S. Part (d) provides a bound of the limit points of the iterates, which is not
arbitrarily far from the projection of the initial point to S.

Part (e) characterizes the limit point of the iterates for an affine solution set. This finding resonates
and generalizes a widely-known phenomenon in the overparametrized linear regression: gradient descent
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initialized at 0 ∈ Rd converges to the min-norm solution. Part (e) demonstrates that such specific convergence
behavior is not unique to linear regression but a consequence of a broader principle captured by the corollary.
In particular, the implication of part (e) covers the generalized linear models (GLMs). While its formal
definition is deferred to Section 4, where our focus shifts from the optimization to the statistical property of
the estimator, the application of part (e) to GLMs is presented in Corollary 4.

As hinted earlier several times, mirror descent algorithm exhibits analogous properties as gradient descent,
through the same lens of the basic inequality. The proofs are in-text, while part (d)-(e) have more details in
Appendix B. Note that Gunasekar et al. (2018) discussed a similar result as part (e), with a specific form of
f(θ) =

∑
i∈[n] f(⟨xi, θ⟩, yi), which enables the gradient descent update always lies on the row space of x’s.

Corollary 2 (Mirror descent). Under Assumption As2 and As3, consider a mirror descent update in (2)
with step sizes ηt ∈ (0, α/L].

(a) (Training loss bound with explicit norm-regularization.) If (i) ϕ is G-smooth with respect to ∥ · ∥ in K,
or (ii) Dϕ(z, θ0) ≤ G

2 ∥θ0 − z∥
2 for any z ∈ K, then for any given T ∈ N,

f(θT ) +
α/4∑T−1
t=0 ηt

∥θ0 − θT ∥2 ≤ min
z∈K

[
f(z) +

(G+ α)/2∑T−1
t=0 ηt

∥θ0 − z∥2
]
.

(b) (Asymptotic training loss.) Define inf f := infθ∈K f(θ), which may be negatively infinite. If
∑∞

t=0 ηt =∞,
then

lim
t→∞

f(θt) = inf f.

(c) (Non-increasing Bregman distance to solution set.) Define the solution set S := {θ∗ ∈ K : f(θ∗) =
infθ∈K f(θ)} ⊆ K, which is closed and convex, but possibly empty. Then BregDistS(u) := mins∈S Dϕ(s, u),
which denotes the Bregman distance from u to S, is well-defined for any u ∈ K ∩ int(Ω). If S ̸= ∅, then

∀s ∈ S, {Dϕ(s, θt)}∞t=1 is non-increasing, and thus, {BregDistS(θt)}∞t=1 is non-increasing.

(d) (Limit of updates.) Suppose S ̸= ∅ and
∑∞

t=0 ηt =∞. Further assume either one of the following:

(i) S ∩ int(Ω) ̸= ∅;
(ii) for any y ∈ Ω and for any sequence {yn}∞n=1 ⊂ int(Ω) converging to y, Dϕ(y, yn)→ 0.1

Then
(i) lim

t→∞
θt = θ∞ ∈ S ∩ int(Ω); (ii) lim

t→∞
θt = θ∞ ∈ S.

(e) (Minimum-Bregman-divergence solution.) If S is a non-empty affine subspace, S ⊂ K ∩ int(Ω), and∑∞
t=0 ηt =∞, then

θ∞ = BregProjS(θ0).

Proof. (a). Note that each of two assumptions for ϕ in the theorem statement gives that Dϕ(z, θ0) =
ϕ(z) − ϕ(θ0) − ⟨∇ϕ(θ0), z − θ0⟩ ≤ G

2 ∥z − θ0∥2. The α-strong convexity of ϕ (via Lemma A3) implies
Dϕ(z, θT ) ≥ α

2 ∥z− θT ∥
2. By the triangle inequality, easily observe that ∥θ0− θT ∥2 ≤ 2∥θ0− z∥2 +2∥z− θT ∥2.

Rearranging this gives us ∥z − θT ∥2 ≥ 1
2∥θ0 − θT ∥

2 − ∥z − θ0∥2. Substituting this into the lower bound for
Dϕ(z, θT ), we have Dϕ(z, θT ) ≥ α

2 (
1
2∥θ0− θT ∥

2−∥z− θ0∥2) = α
4 ∥θ0− θT ∥

2− α
2 ∥z− θ0∥

2. Finally, combining
the upper bound for Dϕ(z, θ0) and the lower bound for Dϕ(z, θT ):

Dϕ(z, θ0)−Dϕ(z, θT ) ≤
(
G

2
∥z − θ0∥2

)
−
(α
4
∥θ0 − θT ∥2 −

α

2
∥z − θ0∥2

)
=
G+ α

2
∥z − θ0∥2 −

α

4
∥θ0 − θT ∥2.

Then the basic inequality in Theorem 2 completes the proof.
1This is not generally true for any Legendre type ϕ, see e.g., Remark 3.4 and Example 7.32 in Bauschke et al. (1997).
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(b). From Theorem 2, for any z ∈ K, we know that f(θT ) ≤ f(z) +Dϕ(z, θ0)/
∑T−1

t=0 ηt. Since
∑∞

t=0 ηt =∞,
taking the limit superior gives lim supT→∞ f(θT ) ≤ f(z). This yields lim supT→∞ f(θT ) ≤ inf f . Since
inf f ≤ f(θT ) trivially holds, we conclude limT→∞ f(θT ) = inf f .

(c). We can write S = K∩ f−1({inf f}). Assume S is non-empty. As both K and f−1({inf f}) are closed and
convex, S is also closed and convex.

First we show that BregDistS(u) is well-defined for any u ∈ K∩ int(Ω). Choose any x ∈ S ⊆ K and define
a set S̃ := S ∩ {y ∈ Rd : ∥y − u∥ ≤

√
(2/α)Dϕ(x, u)}, which is bounded in ∥ · ∥ and closed. Since all norms

on finite-dimensional real vector space are equivalent, S̃ is also bounded with respect to ∥ · ∥2, hence compact.
Note that Dϕ(·, u) is continuous on int(Ω) since ϕ is continuous on int(Ω). Therefore, Dϕ(·, u) attains its
minimum on the compact set S̃. Moreover, as Dϕ(s, u) ≥ α

2 ∥s− u∥
2 for s ∈ K by Lemma A3, we know that

x ∈ S̃ and the minimizer of Dϕ(·, u) over S̃ is the minimizer over S. Thus, BregDistS(u) is well-defined.
Now we prove that Dϕ(·, θt) is non-increasing. The basic inequality in Theorem 2 says that for any s ∈ S:∑T−1

t=0
ηt(f(θT )− f(s)) ≤ Dϕ(s, θ0)−Dϕ(s, θT ).

By the definition of S, clearly f(s) = inf f ≤ f(θT ), so the left-hand side is non-negative. This implies
Dϕ(s, θT ) ≤ Dϕ(s, θ0). Applying this argument iteratively from time τ to ω ≥ τ , we findDϕ(s, θω) ≤ Dϕ(s, θτ ).
Taking the infimum over s ∈ S yields that the sequence {BregDistS(θt)}∞t=0 is non-increasing.

(d). (Proof sketch.) Fix s ∈ S. From part (c), {θt}∞t=0 has a convergent subsequence {θti}∞i=1 with limit
θ∞ := limi→∞ θti ∈ K. By part (b), θ∞ ∈ S. Each of two assumptions given in the theorem statement
implies Dϕ(θ∞, θti)→ 0 as i→∞. Using this we can prove a contradiction if the entire sequence {θt}∞t=0

does not converge to θ∞.

(e). (Proof sketch.) Define P := BregProjS(θ0) ∈ S. Let v := P − θ∞ ̸= 0, then P + cv ∈ S for any c ∈ R
since S is affine. Since S is affine, the generalized Pythagorean theorem for Bregman projection holds with
equality: Dϕ(P + cv, θ0) = Dϕ(P + cv, P ) +Dϕ(P, θ0). Using two other inequalities regarding Dϕ, we can
prove that ⟨∇ϕ(P )−∇ϕ(θ∞), cv⟩ ≤ Dϕ(P, θ0)−Dϕ(P, θ∞) for any c ∈ R. Since Dϕ(P, θ∞) ≤ Dϕ(P, θ0) by
part (c) and (d), we conclude ∇ϕ(P ) = ∇ϕ(θ∞), which implies θ∞ = P .

3.1 Notable example: exponentiated gradient descent algorithm
A prominent instance of mirror descent beyond Euclidean geometry is the exponentiated gradient descent
algorithm (Helmbold et al., 1995; Kivinen and Warmuth, 1997). Exponentiated gradient descent is particularly
suited for optimization problems constrained to the probability simplex ∆d := {a ∈ Rd : ai ≥ 0,

∑d
i=1 ai = 1},

serving a general role in various areas such as portfolio selection (Helmbold et al., 1998; De Rooij et al.,
2014), solving max-margin or log-linear problem (Bartlett et al., 2004; Collins et al., 2008), and aggregation
of models or estimators (Juditsky et al., 2005, 2008).

Exponentiated gradient descent shows that mirror descent efficiently and naturally updates under a
specific constraint set and geometry. To view this algorithm as mirror descent, one chooses K = Ω = ∆d and
the negative entropy function ϕ(a) =

∑d
i=1 ai log ai. Note that ϕ is of Legendre type on ∆d, and 1-strongly

convex on ∆d with respect to ∥ · ∥1, due to Pinsker’s inequality. The Bregman divergence induced by ϕ has
a special form and name: Kullback–Leibler (KL) divergence, DKL(a, b) =

∑d
i=1 ai log(ai/bi). Then, mirror

descent update (2) yields the exponentiated gradient descent update: given θt ∈ int(∆d),

θ̃t+1 = θt ⊙ exp(−ηt∇f(θt)), θt+1 =
1

∥θ̃t+1∥1
θ̃t+1. (3)

The first half of the Corollary 3 is derived by part (a) of Corollary 2. The other half is due to specific structure
of KL divergence. The proof is provided in Appendix B.

Corollary 3 (Training loss bound for the last iterate of EGD). Under Assumption As2 and As3, consider
EGD with iterates in (3) with an initialization of θ0 = (1/d, . . . , 1/d)⊤ ∈ Rd and step sizes ηt ∈ (0, 1/L].
Then for any T ∈ N and z ∈ ∆d:

f(θT ) +
1/4∑T−1
t=0 ηt

∥θ0 − θT ∥21 ≤ f(z) +
1∑T−1

t=0 ηt
min

[
d+ 1

2
∥θ0 − z∥21,

1

2
∥θ0 − z∥21 +

log d

2
∥θ0 − z∥1

)]
.
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3.2 Notable example: generalized linear model (GLM)
As briefly explained after Corollary 1, we can directly apply Corollary 1 and 2, particularly their part (e)
regarding the limit point of iterates, to the generalized linear models (GLM). The GLM, which will be formally
defined in Section 4, is a broad class of model that includes linear regression as a special case. Corollary 4
now details the application on GLM, specifically considering optimization within a general affine set K ⊆ Rd.

Corollary 4 (Limit of gradient descent and mirror descent on GLM). Consider the GLM loss function ℓ(θ)
specified in Definition 1, with a relaxed condition: the optimization domain is not necessarily Rd, but an
affine subset K ⊆ Rd. Write the solution set S := {s ∈ K : ℓ(s) = infθ∈K ℓ(θ)}. Suppose that Assumption As2
and As3 holds with Ω = K and f = ℓ, with appropriate ϕ and α. Further assume S ̸= ∅ and S ⊂ int(K).
Consider the mirror descent update generated by (2) initialized at θ0 ∈ int(K) with step sizes ηt ∈ (0, α/L].
Then, limt→∞ θt → BregProjS(θ0).

Proof. Lemma B1 proves that S = K ∩ ({s}+ {v ∈ Rd : Xv = 0}): a rough intuition for this observation is
that the GLM loss function depends on θ only through Xθ. Since S is an intersection of two affine sets, it is
also an affine set. Therefore, the part (e) of Corollary 2 (and its gradient descent counterpart in Corollary 1)
directly applies, concluding the proof.

4 Application: GLMs with gradient descent
Having observed the application of basic inequalities for analyzing training dynamics in Section 3, we now
shift gears to their statistical perspective: the prediction risk of the estimators. This section will focuses on
generalized linear models (GLMs) and compared two regularization methods: an explicit regularization via
ridge penalties; and an implicit regularization by early-stopped gradient descent. Meanwhile, an analogous
analysis for mirror descent will be presented in the subsequent Section 5.

GLMs refer to a broader model class related to the exponential family, whose formal definition can be
found in Appendix C. The loss function for our analysis is defined below, as a special case of GLMs with an
identity sufficient statistic. This is general enough to include linear, logistic, and Poisson regression, which
are related to Gaussian, Bernoulli, and Poisson distribution, respectively.

Definition 1 (GLM loss and estimator; special case of (19)). Let (X,Y ) ∈ Rn×d × Rn. The GLM loss
function and estimator, with an identity sufficient statistics, are defined as

θ̂0 := argmin
θ∈Rd

ℓ(θ) where ℓ(θ) :=
1

n

(
− Y ⊤Xθ +A(Xθ)

)
. (4)

Note that A : Rn → R acts component-wisely as A(v) =
∑n

i=1A(vi), where A : R → R is the cumulant
function for the corresponding univariate exponential family. Note that, for Gaussian, Bernoulli, and Poisson
distribution, A(ξ) = ξ2/2, A(ξ) = log(1 + eξ), and A(ξ) = eξ, respectively.

Now we introduce the prediction risk, under the fixed-design setting. Where training data is (X,Y ), we
evaluate the prediction risk of an estimator θ = θ(X,Y ) on a fresh response vector W , an independent copy
of Y given fixed X. The formal data generating process and the prediction risk definition are as follows.

Assumption As4 (Data Generating Process). The features X = (x1, . . . , xn)
⊤ ∈ Rn×d is fixed. The responses

Y = (y1, . . . , yn)
⊤ ∈ Rn consist of mutually independent samples yi ∼ Pi. The distribution Pi may depend on

xi. Importantly, Pi is not required to be a member of the exponential family that defines the GLM estimator
(allowing for model misspecification). Let µi := E[yi] under Pi be the true conditional mean of yi. Let
µ := (µ1, . . . , µn)

⊤ ∈ Rn be the vector of true means, and ϵ := Y − µ be the zero-mean noise vector.

Definition 2 (Prediction risk). Under Assumption As4, let θ = θ(X,Y ) be an estimator derived from
training data (X,Y ). Let W = (w1, . . . , wn)

⊤ be a vector of fresh, independent test responses, where wi ∼ Pi

is identically distributed to yi, and W is independent of Y . The prediction risk of an estimator θ is the
expected GLM loss on test data, conditional on training data (X,Y ) is defined as

Risk(θ) :=
1

n
EW

[
−W⊤Xθ +A(Xθ)

∣∣X,Y ] = 1

n

(
− µ⊤Xθ +A(Xθ)

)
. (5)
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4.1 Risk analysis: Ridge-penalized GLM estimator
We begin our risk analysis with the widely-used explicit regularization, the ridge penalty, in order to later
compare with gradient descent. The ridge-penalized GLM estimator is defined by augmenting the GLM loss
(4) with an additional ∥ · ∥22-penalty on the coefficients. For a user-chosen regularization parameter λ ≥ 0,
the ridge estimator θ̂λ is the minimizer of

ℓλ(θ) := ℓ(θ) + λ∥θ∥22, i.e., θ̂λ := argmin
θ∈Rd

ℓλ(θ). (6)

Note that ℓ0(θ) = ℓ(θ), making θ̂0 defined in (4) be consistent to the definition in (6) with λ = 0. The
cumulant function A used in a GLM is convex, which implies ℓ(θ) is also convex. Consequently, ℓλ(θ) is
2λ-strongly convex for λ > 0, whose standard proof using properties of A can be found in Appendix D.

Our first result, Proposition 1, provides a general bound on the prediction risk of the ridge-penalized
GLM estimator θ̂λ against the one for an arbitrary parameter θ.

Proposition 1 (Risk bound for ridge-penalized GLM estimator). For any λ > 0 and any reference parameter
θ ∈ Rd, the prediction risk of θ̂λ is bounded by:

Risk(θ̂λ) ≤ Risk(θ) +
1

2λ

∥∥∥X⊤ϵ

n

∥∥∥2
2
+ 2λ∥θ∥22.

The above proposition decomposes the excess risk Risk(θ̂λ)− Risk(θ) into two parts, a ‘variance’ term
1
n∥X

⊤ϵ/n∥22 and a ‘regularization’ term ∥θ∥22, which can be balanced by choosing λ. To make this bound
more statistically sound, we assume sub-Gaussian noise and obtain the high-probability bound.

Proposition 2 (Oracle risk bound for ridge-penalized GLM estimator). Assume each ϵi in Assumption As4
is sub-Gaussian with parameter σ2

i . Let σ2 := maxi σ
2
i . Recall that Σ̂ = 1

nX
⊤X. Then, for any δ > 0 and

b > 0, choosing
λ =

σ

2b
√
n

√
tr
(
Σ̂
)
+ 2
∥∥Σ̂∥∥

F

√
δ + 2

∥∥Σ̂∥∥
op
δ (7)

yields the following bound with probability at least 1− e−δ:

Risk(θ̂λ)− inf
θ: ∥θ∥2≤b

Risk(θ) ≤ 2bσ√
n

√
tr
(
Σ̂
)
+ 2
∥∥Σ̂∥∥

F

√
δ + 2

∥∥Σ̂∥∥
op
δ. (8)

The above bound depends on the spectrum of the empirical covariance matrix Σ̂. Regarding the spectral
properties of Σ̂, consider a following common scenario which holds, for instance, for random designs of features
where entries of X are independent sub-Gaussian (see Vershynin (2018) for concentration results):

tr
(
Σ̂
)
= O(d),

∥∥Σ̂∥∥
F
= O(

√
d), and

∥∥Σ̂∥∥
op

= O(1), with respect to d. (9)

Then, letting δ = log n in (8) yields an excess risk bound of Õ(bσ
√
d/n) with probability at least 1− 1/n.

We now state our main result for the ridge-penalized GLM estimator. Theorem 4 tailors an oracle
inequality from Proposition 2 to specific GLMs by identifying their respective sub-Gaussian noise parameter.
The proof, presented in Appendix D, adapts the one for Proposition 2 but requires particular observation for
the Poisson regression, which leads to a slightly less probability guarantee than the Gaussian and Bernoulli
distributions.

Theorem 3 (Specific cases of ridge-penalized GLM estimator). Under Assumption As4, consider the ridge-
penalized GLM with the parameter λ, i.e., with the loss function of ℓλ in (6), where ℓ uses (i) Gaussian
distribution (linear regression), (ii) Bernoulli distribution (logistic regression), or (iii) Poisson distribution
(Poisson regression). Further assume, respectively, one of the following for Pi in Assumption As4:

(i) Gaussian distribution where Pi = N (µi, σi), for all i ∈ [n];

(ii) Bernoulli distribution where Pi = Bernoulli(µi), for all i ∈ [n];

(iii) Poission distribution where Pi = Pois(µi), for all i ∈ [n], and n ≥ 3.

11



Define σDist as the following, respectively:

(i) For Gaussian Pi, σDist = max1≤i≤n σi;

(ii) For Bernoulli Pi, σDist = 1/2 ;

(iii) For Poisson Pi, σDist = (2∥µ∥∞ + 2/3) log n+ ∥µ∥∞/2, where ∥µ∥∞ := max1≤i≤n µi.

Finally, for any δ > 0 and b > 0, if we choose

λ =
σDist

2b
√
n

√
tr
(
Σ̂
)
+ 2
∥∥Σ̂∥∥

F

√
δ + 2

∥∥Σ̂∥∥
op
δ,

then with the probability at least 1− e−δ for (i)-(ii), or 1− 1/n− e−δ for (iii),

Risk(θ̂λ)− inf
θ: ∥θ∥2≤b

Risk(θ) ≤ 2bσDist√
n

√
tr
(
Σ̂
)
+ 2
∥∥Σ̂∥∥

F

√
δ + 2

∥∥Σ̂∥∥
op
δ.

Theorem 3 establishes a unified prediction risk bound applicable for widely used GLMs. The derived
high-probability upper bound of Õ(bσ

√
d/n), contingent upon the spectral properties of Σ̂ in (9), provides a

general benchmark for estimator performance.
A notable strength of this theorem lies in its robustness to model misspecification. For example, instead

of Gaussian distribution N (µi, σ
2
i ), any sub-Gaussian distributions with parameter σ2

i is valid for case (i).
Also, instead of Bernoulli(µi), any bounded yi ∈ [0, 1] is still valid for case (ii). This aspect underscores broad
applicability of the theorem, and more fundamentally, the basic inequality.

Comparison with existing literature. While this unified bounds offers a useful general perspective, its
comparison with the literature reveals nuances for each GLM.

Considering ordinary linear regression (i.e., λ = 0; no penalty), we know the closed form solution
is θ̂ = (X⊤X)−1X⊤Y , when it is well-defined. Starting from this closed form solution, we can derive
tighter analysis: in a well-specified case of E[Y ] = Xθ0, we can prove that Risk(θ̂)− Risk(θ0) =

1
2n∥Hϵ∥

2
2

where H = X(X⊤X)−1X⊤ is the projection matrix. Moreover, when ϵi ∼ sG(σ2), we can prove that
Risk(θ̂)− Risk(θ0) has a high-probability upper bound of O(σ2d/n). Compared to our bound of Õ(bσ

√
d/n),

this upper bound does not depend on b when b > ∥θ0∥2 but instead σ has a squared term, and more
importantly, the magnitude of d/n factor is not a square root. Also, this does not cover general b < ∥θ0∥2.
Related calculations are provided in Appendix D.

Regarding the ridge regression (i.e., λ > 0), the literature has considered a couple notion of prediction
risks, which also yields O(

√
d/n) bound. Ali et al. (2019) defined in-sample and out-of-sample prediction risk

for ridge regression, similar but not identical to our definition of the risk. For brevity, here we discuss their
out-of-sample risk bound only. They derived the exact upper bound instead of a high-probability bound,
whose form is simplified to λ2

(1+λ)2 ∥β0∥
2
2 +

σ2d
n(1+λ)2 when Σ̂ = Σ = I. The bound achieves the minimum value

of O(∥β0∥σ
√
d/n) with the best choice of λ. Meanwhile, λ = 0 covers the ordinary linear regression case,

with the bound O(σ2d/n). Yet this observation does not apply to general b < ∥β0∥2.
Moreover, regarding out-of-sample prediction risk for ordinary linear regression and ridge regression,

their asymptotic value, in almost surely limit, has been studied leveraging the closed form solutions and
Marchenko-Pastur theorem in random matrix theory (Hastie et al. (2022); Dobriban and Wager (2018); nicely
summarized in Tibshirani (2023)).

In the context of L2-regularized logistic regression, the Õ(b
√
d/n) rate provides a better or comparable

rate to known results. Bach (2010) leverages the self-concordance property of the logistic loss, to bound
prediction risks for misspecified and well-specified models. The misspecified case offers high-probability bound
of O(b2d/

√
n) if Gaussian xi’s are further assumed. The well-specified model result is not universal in the

sense that it needs many conditions to be satisfied related to the data. Yet with the strongest heuristic
assumption that all matrices appearing are isometric, the high-probability upper bound that we can deduce
is O(bd/

√
n) with the best choice of λ = O(d/

√
n).

In summary, while Theorem 3 offers a valuable unified perspective on prediction risk for a range of GLMs,
it may not achieve the optimal rate for every specific model instance when benchmarked against highly
specialized analyses, but still provides interesting and useful new results.
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4.2 Risk analysis: Early-stopped gradient descent GLM estimator
Changing the point of view from the explicit regularization to implicit regularization, now we focus on GLM
estimators obtained by early stopping of gradient descent with the original, non-penalized GLM loss ℓ(θ)
in (4). We initialize with θ0 = 0. Let θ(gd)T denote the iterate after T steps of either, (i) standard gradient
descent on Rd, or (ii) projected gradient descent on Bd(b) with some b > 0. Mirroring the role of λ in ridge
regression, we define an effective regularization parameter for early stopping with constant step size η:

λT =
1

ηT
. (10)

This definition of λ is motivated by our basic inequality for gradient descent in Theorem 1. If variable step
sizes ηt are used, then λT = 1/

∑T−1
t=0 ηt.

Before we introduce our main result, we introduce another variant of gradient descent, projected gradient
descent, over a closed convex set K with an initialization θ0 ∈ R and step size ηt, whose iterates follow

θ̃t+1 = θt − ηt∇f(θt), θt+1 = argmin
θ∈K

∥θ̃t+1 − θ∥22. (11)

It is known that the projected gradient descent is a special case of mirror descent iterates in (2) with
ϕ = 1

2∥ · ∥
2
2, which is also a special case of an equivalent two-step update form of mirror descent.2 Thus

Theorem 2 holds for the projected gradient descent as well: f(θT )− f(z) ≤ 1
2ηT (∥z− θ0∥

2
2−∥z− θT ∥22), which

has the same form as Theorem 1 but only for z ∈ K.
Therefore, we will consider both gradient and projected gradient descent together in this section. The

risk bound for early-stopped (projected) gradient descent in Proposition 3 closely resembles that for ridge
regression, a testament to the connection of these two regularization methods.

Proposition 3 (Risk bound for early-stopped (projected) gradient descent GLM estimator). Assume the
GLM loss ℓ(θ) is L-smooth in either (i) Rd or (ii) Bd(b) for some b > 0. For each assumption, respectively,
consider θ(gd)T obtained by T iterations of

(i) gradient descent as (1) or (ii) projected gradient descent over Bd(b) for b > 0 as (11), (12)

with initalization θ0 = 0 and constant step size η ∈ (0, 1/L]. Then, for any stopping time T ∈ N and any
reference point (i) θ ∈ Rd or (ii) θ ∈ Bd(b), respectively:

Risk
(
θ
(gd)
T

)
≤ Risk(θ) +

1

2λT

∥∥∥X⊤ϵ

n

∥∥∥2
2
+
λT
2
∥θ∥22. (13)

Note that the similar results holds for arbitrary stepsizes ηt ∈ (0, 1/L], as the proof in Appendix E explains.
The resemblance of the above proposition with Proposition 1 is remarkable, which is originated from the
connection between gradient descent and ridge penalty in the basic inequality in Theorem 1. As Proposition
1 led to 2 in the ridge-GLM case, we have an analogous oracle inequality for early-stopped gradient descent
estimator for GLM.

Proposition 4 (Oracle risk bound with sub-Gaussian noise for early-stopped GLM estimator). Assume that
ϵi in Assumption As4 is sub-Gaussian with parameter σ2

i . Write σ := max(σ1, . . . , σn). Further assume that
the loss function ℓ is either L-smooth in either (i) Rd or (ii) Bd(b) for some b > 0. Consider θ(gd)T obtained
by T iterations of (12), with initalization θ0 = 0 and constant step size η ∈ (0, 1/L]. For any δ > 0, define

λ∗gd =
σ

b
√
n

√
tr
(
Σ̂
)
+ 2
∥∥Σ̂∥∥

F

√
δ + 2

∥∥Σ̂∥∥
op
δ.

Suppose the following stopped-time T is an integer:

T =
1

ηλ∗gd
.

2Step 1: θ′t+1 = (∇ϕ)−1[∇ϕ(θt)− ηt∇f(θt)]. Step 2: θt+1 = argminθ∈K Dϕ(x, θ
′
t+1).
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Then, the following holds with probability at least 1− e−δ:

Risk(θ
(gd)
T )− inf

θ: ∥θ∥2≤b
Risk(θ) ≤ bσ√

n

√
tr
(
Σ̂
)
+ 2
∥∥Σ̂∥∥

F

√
δ + 2

∥∥Σ̂∥∥
op
δ.

In general, for

T =
⌈ 1

ηλ∗gd

⌉
, i.e. T = argmin

t∈N
{λt ≤ λ∗gd},

the same bound holds as above with an additional discretization error term on the right-hand side of
(σ2η/(2n)) · (tr

(
Σ̂
)
+ 2
∥∥Σ̂∥∥

F

√
δ + 2

∥∥Σ̂∥∥
op
δ).

Using the above proposition, we have the main theorem for the early-stopped GLM estimator, similar to
Theorem 3 for the ridge-penalized estimator. The proof can be found in Appendix E.3.

Theorem 4 (Specific cases of early-stopped GLM estimator). Under Assumption As4, consider the GLM
with the loss function ℓ in (4), using (i) Gaussian, (ii) Bernoulli, or (iii) Poisson distributions, as in Theorem
3. For each (i)-(iii), respectively, further assume that the distribution Pi and σDist are those in Theorem 3.
Then, for each distribution, ℓ is LDist-smooth in certain domains:

(i) For Gaussian Pi’s, ℓ is ∥Σ̂∥op-smooth in Rd;

(ii) For Bernoulli Pi’s, ℓ is 1
4∥Σ̂∥op-smooth in Rd;

(iii) For Poisson Pi’s, ℓ is ∥Σ̂∥op exp(b ·max1≤i≤n ∥xi∥2)-smooth in Bd(b) for any b > 0.

Moreover, consider following optimization algorithm with step size η ∈ (0, 1/LDist]:

(i)-(ii) Gradient descent with iterates of (1);

(iii) Projected gradient descent on Bd(b) with iterates of (11).

Define λ∗gd for (i)-(iii) respectively as

λ∗gd =
σDist

b
√
n

√
tr
(
Σ̂
)
+ 2
∥∥Σ̂∥∥

F

√
δ + 2

∥∥Σ̂∥∥
op
δ.

Suppose the following stopped-time T is an integer:

T =
1

ηλ∗gd
.

Then, for any δ > 0 and b > 0, the following holds with the probability at least 1− e−δ for (i)-(ii), or
1− 1/n− e−δ for (iii),

Risk(θ
(gd)
T )− inf

θ: ∥θ∥2≤b
Risk(θ) ≤ bσDist√

n

√
tr
(
Σ̂
)
+ 2
∥∥Σ̂∥∥

F

√
δ + 2

∥∥Σ̂∥∥
op
δ.

In general, for T = ⌈ 1
ηλ∗

gd
⌉, i.e., T = argmint∈N{λt ≤ λ∗gd}, the same bound holds as above with an additional

discretization error term on the right-hand side, same as Proposition 4.

Theorem 4 shows that early-stopped (projected) gradient descent achieves essentially the same oracle risk
bound as optimally tuned ridge regression, stated in Theorem 3, up to the small discretization error.

Comparison with existing literature. A tighter analysis has been done in linear regression. Ali et al.
(2019) compares ridge regression and gradient flow, a continuous-time version of gradient flow, leveraging
their closed-form solutions. They establish that the out-of-sample prediction risk bound of gradient flow at
time t is within a factor of 1.7 of the risk from the ridge solution with λ = 1/t. Furthermore, the ratio of
their minimum Bayes risks is tightly bounded.
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In the context of overparametrized logistic regression, where data is more likely to be linearly separable,
Wu et al. (2025) derive high-probability upper bounds on the excess risk for early-stopped gradient descent.
They prove the existence of a stopping time that achieves rates of O(d/n) in the well-specified case and
O(
√
d/n) in the misspecified case. Notably, their definition of excess risk does not reflect the size of interested

domain, b. They also suggests a connection between the gradient descent and ridge regularization, with
respect to the angle between their estimators.

While our results only cover small step sizes bounded by 1/L, Wu et al. (2024) study gradient descent
with large step size for logistic regression on linearly separable data. They identify three phases of training
with gradient descent which consequently leads to a monotonic decrease of of the loss.

5 Application: GLMs with exponentiated gradient descent
In this section, we explore early-stopped mirror descent with basic inequalities developed in Section 2.2,
and its corresponding explicit regularization, named Bregman-divergence-penalized regularization. As a
key application of our general theory, we focus on the exponentiated gradient descent for GLMs and
Kullback–Leibler (KL) divergence penalty. These results are connected to stacking or model aggregation,
which are discussed in detail later this section.

5.1 Risk analysis: KL-penalized GLM
Let’s recall related definitions and notations from previous sections: the training data (X,Y ) is generated as
Assumption As4 and the prediction risk of an estimator follows Definition 2; the GLM loss function is of the
form ℓ(θ) = 1

n (−Y
⊤Xθ +A(Xθ)). Then, we define Bregman-divergence-penalized GLM loss function and

estimator as the following:

θ̂λ,ϕ,z := argmin
θ∈K

ℓλ,ϕ,z(θ) where ℓλ,ϕ,z(θ) := ℓ(θ) + λDϕ(θ, z),

where λ ≥ 0 is the regularization parameter, a set K ⊆ Rd is closed and convex, a function ϕ : K → R is
convex, z ∈ K, and Dϕ(θ, z) is a Bregman divergence defined in Section 2.2.

While general theoretical results and discussion for Bregman-divergence-penalized GLMs can be found in
Appendix F, our focus is an instance of this, named KL-penalized GLM estimator. Our interest is to find an
estimator lying in the d-dimensional simplex,

∆d :=
{
θ ∈ Rd : θi ≥ 0,

∑d

i=1
θi = 1

}
,

and thus we choose K = ∆d. One popular example of such setting is stacking or model aggregation, where
base predictors {hi}di=1 are given, and we construct an aggregated predictor hθ =

∑d
i=1 θihi under certain

risk criterion (Wolpert, 1992; Breiman, 1996). The vector of weights θ = (θ1, · · · , θd)⊤ is the parameter to be
learned from the data, and is typically constrained in ∆d as it represents a convex combination of the base
predictors. The base predictors {hi}di=1 are used as benchmarks for evaluating the aggregation method, and
will not be updated during the learning procedure.

In our setting, the task is to learn θ ∈ ∆d with a small prediction risk, subject to certain KL-divergence
budget constraint. Thus, we choose ϕ to be the negative entropy function ϕ(θ) =

∑d
i=1 θi log θi for θ ∈ ∆d,

so that Dϕ becomes the KL divergence DKL(a, b) =
∑d

i=1 ai log(ai/bi), as mentioned in Section 3.1. Also, we
measure the KL divergence with respect to the uniform distribution π = (1/d, . . . , 1/d)⊤ ∈ ∆d. In conclusion,
we consider following KL-penalized GLM loss function and estimator:

θ̂λ := argmin
θ∈∆d

ℓλ(θ) where ℓλ(θ) := ℓ(θ) + λDKL(θ, π). (14)

Then, Proposition 5, which is analogous to Proposition 1 in ridge GLM, holds as a special case of general
result for Bregman-divergence-penalized GLM (see Appendix F). Consequently, we can establish oracle
risk bound on the prediction risk of θ̂λ, under a sub-Gaussian noise assumption and fixed design similar to
Proposition 2. When we relax the assumption to max1≤j≤d ∥X·j∥2 ≤ Cd

√
n where Cd is a constant only
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depends on d, the risk bound from the proposition is also just Cd folded and become Õ(σCd

√
(b log d)/n).

Then, finally, we can establish oracle risk bounds for specific GLMs based on Proposition 6, whose result and
proof is parallel to Theorem 3. The proofs can be found in Appenxis F.

Proposition 5 (Risk bound for KL-penalized GLM estimator). For the KL-penalized GLM estimator θ̂λ, its
prediction risk is bounded by:

Risk(θ̂λ)− Risk(θ) ≤ 1

λ

∥∥∥X⊤ϵ

n

∥∥∥2
∞

+ 2λDKL(θ, π).

Proposition 6 (Oracle risk bound with sub-Gaussian noise for KL-penalized GLM estimator). Assume that
each ϵi in Assumption As4 is sub-Gaussian with parameter σ2

i . Further assume that max1≤j≤d ∥X·j∥2 ≤
√
n

where X·j denotes the j-th column of X. Write σ := max(σ1, . . . , σn). Then, for any δ > 0 and b > 0, by
choosing

λ = σ

√
log(2d) + δ

nb
,

the following holds with probability at least 1− e−δ:

Risk(θ̂λ)− inf
θ: DKL(θ,π)≤b

Risk(θ) ≤ 4σ

√
b(log(2d) + δ)

n
.

Theorem 5 (Specific cases of KL-penalized GLM estimator). Under Assumption As4 and the setting of
Proposition 6, consider the KL-penalized GLM with the parameter λ, i.e., with the loss function of ℓλ in (14),
where ℓ uses (i) Gaussian, (ii) Bernoulli, or (iii) Poisson distributions. Further assume, for each (i)-(iii),
the distribution Pi and sub-Gaussian parameter σDist are as given in Theorem 3. Then, for any δ > 0 and
b > 0, if we choose

λ = σDist

√
log(2d) + δ

nb
,

then with probability at least 1− e−δ for (i)-(ii), or 1− 1/n− e−δ for (iii),

Risk(θ̂λ)− inf
θ: DKL(θ,π)≤b

Risk(θ) ≤ 4σDist

√
b(log(2d) + δ)

n
.

5.2 Risk analysis: Early-stopped exponentiated gradient descent GLM estimator
Now we consider the explicit regularization counterpart of KL-penalized GLM, that is, early stopping
exponentiated gradient descent on the unpenalized GLM loss function ℓ(θ). As before, broader observation
for early-stopped mirror descent corresponding to Bregman-divergence-penalized GLM is possible, and can
be found in Appendix F.

Recall exponentiated gradient descent iterates in (3) from Section 3.1. Just for clarity, we denote the
T -th iterate as θ(egd)T . Let the initialization is the uniform distribution, i.e., θ0 = π ∈ ∆d, and define

λT =
1

ηT

as the effective regularization parameter. Then, we can obtain general and oracle risk bounds for θ(egd)T ,
similar to those of KL-penalized GLM, in Proposition 7 and 8. Remark that, in the bounds, λT essentially
plays the role of λ in KL-penalized GLM. In conclusion, we obtain the risk bounds of θ(egd)T for specific GLMs
in Theorem 6 as in Theorem 5 of KL-penalized GLMs. The proofs are deferred to Appendix F.

Proposition 7 (Risk bound for early-stopped exponentiated gradient descent GLM estimator). Under
Assumptions As2 and As3, consider exponentiated gradient descent iterates θ(egd)T with a constant step size
satisfying η ∈ (0, 1/L] and the initialization θ0 = π = (1/d, . . . , 1/d)⊤ ∈ K. Then, for any T ∈ N and θ ∈ K,

Risk(θ
(egd)
T )− Risk(θ) ≤ 1

2λT

∥∥∥X⊤ϵ

n

∥∥∥2
∞

+ λTDKL(θ, π).
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Proposition 8 (Oracle risk bound with sub-Gaussian noise for early-stopped exponentitated gradient descent
GLM estimator). Under the same setting as in Proposition 7, suppose that each ϵi in Assumption As4 is
sub-Gaussian with parameter σ2

i . Further assume that max1≤j≤d ∥X·j∥2 ≤
√
n where X·j denotes the j-th

column of X. Write σ := max(σ1, . . . , σn). For any δ > 0 and b > 0, define

λ∗egd = σ

√
log(2d) + δ

nb
.

Suppose the following stopped-time T is an integer:

T =
1

λ∗egdη
.

Then, the following holds with probability at least 1− e−δ:

Risk(θ
(egd)
T )− inf

θ: DKL(θ,π)≤b
Risk(θ) ≤ 2σ

√
b(log(2d) + δ)

n
.

In general, for T = ⌈1/(λ∗egdη)⌉, i.e., T = argmint∈N{λt ≤ λ∗egd}, the same bound holds as above, with an
additional discretization error term of η2σ3 · (log(2d) + δ)3/2/(n3/2b1/2).

Theorem 6 (Specific cases of early-stopped exponentiated gradient descent GLM estimator). Under As-
sumption As4 and the setting of Proposition 8, consider the GLM with the loss function ℓ in (4), using the
distribution (i) to (iii) from Theorem 3. For each (i)-(iii), assume that the distribution Pi and sub-Gaussian
parameter σDist are as given in Theorem 3, and the loss ℓ is LDist-smooth on ∆d with respect to ∥ · ∥1:

(i) For Gaussian distribution: LDist = ∥Σ̂∥1→∞ = 1
n maxj∈[d] ∥X·j∥22 ≤ 1;

(ii) For Bernoulli distribution: LDist =
1
4∥Σ̂∥1→∞ = 1

4n maxj∈[d] ∥X·j∥22 ≤ 1
4 ;

(iii) For Poission distribution: LDist =
1
n maxj∈[d]

∑n
i=1 exp(∥xi∥∞)x2ij.

Respectively for (i) to (iii), consider exponentiated gradient descent updates with a constant stepsize η = 1/LDist,
and define λ∗egd as

λ∗egd = σDist

√
log(2d) + δ

nb
.

Suppose the following stopped-time T is an integer:

T =
1

ηλ∗egd
=
LDist

λ∗egd
.

Then, the following holds with probability 1− e−δ for (i) and (iii), or 1− 1/n− e−δ for (iii):

Risk(θ
(egd)
T )− inf

θ: DKL(θ,π)≤b
Risk(θ) ≤ 2σDist

√
b(log(2d) + δ)

n
.

In general, for T = ⌈1/(ηλ∗egd)⌉, the same bound holds as above with an additional discretization error of
(σ3

Dist/L
2
Dist) · (log(2d) + δ)3/2/(n3/2b1/2).

Comparison with existing literature. Extensive research has focused on investigating the theoretical
properties of the optimal aggregated predictor and designing efficient algorithms for its computation. In
this context, let θ̂ denote the aggregation weights output by a statistical procedure (e.g., empirical risk
minimization) or an efficient algorithm (e.g., mirror descent). The central object of interest in such analysis
is the excess risk,

R(θ̂)− inf
1≤i≤d

R(hi),

where R denotes the risk function. This excess risk measures how well θ̂ performs compared to the best base
predictor.
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The existing literature has established a ‘fast rate’ of convergence for the excess prediction risk of some
specific aggregated predictors in model aggregation. Seminal works, including Dalalyan and Salmon (2012) and
Lecué and Mendelson (2013), demonstrate that for i.i.d. data {(xi, yi)}ni=1 and certain bounded or quadratic
loss functions, the celebrated exponentially weighted aggregate algorithm achieves a rate of O(log d/n). This
result was subsequently extended by Juditsky et al. (2008) to a broader class of loss functions satisfying a key
structural assumption known as exponential concavity, using mirror averaging algorithms based on online
mirror descent. Later, Lecué and Rigollet (2014) propose the Q-aggregation procedure, whose loss function is
a mixture of those used in model aggregation and randomized model selection (see Section 6), penalized by a
weighted ℓ1-norm. The authors establish that Q-aggregation achieves the fast rate of O(log d/n) if the loss
function is strongly convex and Lipschitz on a finite interval. As we can see, a critical aspect of these fast
rate results is that they rely on the exponential concavity (or strong convexity) of the loss function, which
is a stronger condition than standard convexity. When the loss function is only assumed to be convex, a
standard parametric rate O(1/

√
n) is expected, cf. Theorem 2 of Lecué (2007).

In contrast, our analysis requires neither exponential concavity assumption nor i.i.d. data points. Since
supθ∈∆d

DKL(θ, π) ≤ log d (see Appendix B.3), our risk bounds imply

Risk(θ̂)− inf
θ∈∆d

Risk(θ) = O

(
log d√
n

)
.

An important remark is that the above infimum is over all possible convex combinations of the base learners,
instead of only the base learners themselves. As we can see, our rate is slower than the fast rate by a factor
of
√
n. We conjecture that it may be possible to recover the fast rate for GLMs by fully exploiting the strong

convexity of the loss function ℓ(·) over ∆d. However, this refinement is beyond the scope of the present paper
and we leave it future work.

6 Application: Risk of randomized predictors
This section focuses on random model selection, another type of approach for constructing a meta-learner
from a collection of base learners. This method is distinguished from model aggregation in Section 5, since
model aggregation outputs a composite prediction as a convex combination of outputs from the base learners.
Formally, given a set of candidate models B, we will randomly select one model β ∈ B according to a
probability distribution θ over B. If B is finite, then θ becomes a probability vector in the simplex ∆|B|. Our
goal is to find a distribution θ̂ so that a randomly selected model β̂ ∈ B according to θ̂ behaves nicely.

A model is an any form of function β : X → Y. Given a loss function r : Y2 → R and n observed data
{(xi, yi)}ni=1, we consider population risk R and empirical risk R̂n of a model β as following:

R(β) = E(X,Y )

[
r(β(X), Y )

]
or EY |X

[
r(β(X), Y )]; and R̂n(β) =

1

n

∑n

i=1
r(β(xi), yi).

For instance, but not limited to, for the GLMs considered in earlier sections, one may take r(y′, y) =
−yy′ +A(y′), and thus, using β to represent the parameter of the GLM model,

R̂n(β) = ℓ(β) =
1

n

∑n

i=1

(
− yix⊤i β +A(x⊤i β)

)
.

One approach to construct a random model selector θ is exponential weighting based on the empirical risk
evaluated on each model. Namely, we can use

θ̂λ(dβ) ∝ exp(−R̂n(β)/λ) · π(dβ), (15)

where π is a base measure and λ is a tuning parameter. For example, when B is finite, one possible base
measure is the uniform base measure π(β) = 1/|B|. The above θ̂λ is called “Gibbs posterior” in Bayesian
statistics literature, and can be equivalently defined via the following KL-divergence-penalized random model
selection problem (Alquier, 2024):

θ̂λ = argmin
θ∈P(B)

{
Eβ∼θ

[
R̂n(β)

]
+ λDKL(θ, π)

}
, (16)
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where P(B) is the set of all probability measures on B, and the expectation Eβ∼θ[R̂n(β)] is taken only with
respect to the randomness over β, i.e., Eβ∼θ[R̂n(β)] =

∫
B R̂n(β)θ(dβ). The optimization problem (16) is

sometimes referred to as information risk minimization in literature that uses information-theoretic tools to
derive generalization bounds for learning algorithms (Zhang, 2006; Xu and Raginsky, 2017).

Let β̂λ be a random model drawn by the distribution θ̂λ. Using basic inequalities, we can upper bound
expected population risk of random β̂λ in Proposition 9. In fact, our bounds presented below apply to any
pair of (R̂n, R) with minimal assumptions, and only depend on∥∥∥R̂n −R

∥∥∥
L∞(B)

:= sup
β∈B

∣∣∣R̂n(β)−R(β)
∣∣∣,

which is related to the rate of uniform convergence of R̂n to R over the model space B. Note that Eβ∼θ[R(β)]
in the proposition serves a similar role of Risk(β) in Section 4 and 5. The proof is in Appendix G.

Proposition 9 (Expected population risk of model sampled via θ̂λ). Let a probability distribution θ̂λ be as
defined in Equation (16). Then, the following bounds holds for expected population risk of a model randomly
selected via θ̂λ: for any distribution θ ∈ P(B),

Eβ∼θ̂λ
[R(β)]− Eβ∼θ [R(β)] ≤

1

λ

∥∥∥R̂n −R
∥∥∥2
L∞(Θ)

+ 2λDKL(θ, π).

We should consider not just an explicit regularized estimator θ̂λ, but also an implicit regularized estimator.
Let θ(egd)T be the T -th exponentiated gradient descent iterate (3) for optimizing f(θ) := Eβ∼θ[R̂n(β)], with
the initialization z ∈ P(B) and a constant step size η > 0. We can derive a similar excess risk bound for
θ
(egd)
T using basic inequality for exponentiated gradient descent in Proposition 10. Note that the proposition

allows any arbitrarily large step size η. This is because the loss function f(θ) is linear in θ, and therefore
L-smooth for any L > 0. The proof is deferred to Appendix G.

Proposition 10 (Expected population risk of model sampled via θ(egd)T ). Denote λT = 1/ηT . Then, the
following bound holds for expected population risk of a model randomly sampled via θ(egd)T : for any stopped-time
T ∈ N and distribution θ ∈ P(B),

E
β∼θ

(egd)
T

[R(β)]− Eβ∼θ [R(β)] ≤
1

2λT

∥∥∥R̂n −R
∥∥∥2
L∞(Θ)

+ λTDKL(θ, π).

An interesting fact is that θ(egd)T and θ̂λ are actually the same estimator in this scenario. Note that the
gradient of f is constant: ∇f(θ) = (R̂n(β))β∈B for any θ ∈ B. Therefore, the θ(egd)T has the following form by
mathematical induction:

θ
(egd)
T (dβ) =

exp(−ηT R̂n(β)) · π(dβ)∫
B exp(−ηT R̂n(β)) · π(dβ)

=
exp(−R̂n(β)/λT ) · π(dβ)∫
B exp(−R̂n(β)/λT ) · π(dβ)

. (17)

This is identical to θ̂λ in (15), and more interestingly, in Proposition 9 and 10, we were able to observe their
equivalence without looking into the closed form solution of θ̂λ and θ(egd)T . Such an equivalence between the
implicit regularization of exponentiated gradient descent and explicit regularization via KL penalty holds for
general linear loss functions f .

Discussion and comparison with Alquier (2024). The main results on the population risk of β̂λ in
Alquier (2024) are obtained under the assumptions that the observed data {Zi}ni=1 are i.i.d., and a non-
negative loss is bounded by an absolute constant C > 0. Under this setting, they define R(β) = EZ [r(β, Z)]
and R̂n(β) =

1
n

∑n
i=1 r(β, Zi). Then, the following holds with probability at least 1− e−δ: for any θ ∈ P(B),

Eβ∼θ̂λ
[R(β)]− Eβ∼θ[R(β)] ≤

C2

4nλ
+ 2λ

(
DKL(θ, π) + log 2 + δ

)
.

Unfortunately, our upper bound in Proposition 9 is not always comparable to the above bound, since it is
impossible to upper bound the term ∥R̂n −R∥L∞(B) only under the bounded loss assumption. If we further
assume that B is finite, then applying Hoeffding’s inequality and a simple union bound yields

P
(∥∥∥R̂n −R

∥∥∥
L∞(B)

≥ C
√

log(2|B|) + δ

2n

)
≤ e−δ.
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Then Proposition 9 implies that, with probability at least 1− e−δ,

Eβ∼θ̂λ
[R(β)]− Eβ∼θ [R(β)] ≤

C2(log(2|B|) + δ)

2nλ
+ 2λDKL(θ, π).

This bound has an additional log |B| factor compared to the bound by Alquier (2024). However, it may be
possible to remove this extra factor via a more refined analysis (in which Young’s inequality, used in the proof
of Proposition 10, is replaced by a more sophisticated bound, such as Donsker-Vadharan, which is critical in
the analysis in Alquier (2024)).

7 Other iterative algorithms and basic inequalities
The basic inequalities can be derived for other iterative algorithms as well. Here we introduce several of them
which were not used in the three applications in the paper (Section 3, 4, and 5).

7.1 Proximal gradient descent
While gradient descent corresponds to the forward Euler method for solving ordinary differential equations,
proximal gradient descent is its backward (implicit) Euler method analog, used to minimize composite function
f = g + h with convex differentiable g, and convex but potentially non-differentiable h. Given initialization
θ0 and step sizes (ηt)

∞
t=0, proximal gradient descent iterates via

θt+1 = Proxηth(θt − ηt∇g(θt)), where Proxh(θ) := argmin
z∈Rd

1

2
∥θ − z∥22 + h(z).

The operator Proxh is called the proximal operator. The proximal gradient descent iterates can be equivalently
expressed as

θt+1 = θt − ηtGηt
(θt), where Gη(θ) :=

1

η

(
θ − Proxηh(θ − η∇g(θ))

)
. (18)

Proximal gradient descent encompasses several well-known algorithms as special cases, and some of them will
be discussed later. A key requirement of this algorithm is that the proximal operator must be computable in
closed form (or efficiently approximable), as it defines the core of each iterate.

Assumption As5 (Proximal gradient descent setting). f : Rd → R is a convex function of the form f = g+h,
where g is convex and differentiable, and h is convex but possibly non-differentiable. The proximal operator
Proxh is computable.

Theorem 7 (Basic inequality for proximal gradient descent). Under Assumption As5, consider proximal
gradient descent with iterates (18). Suppose one of the following holds:

(i) g is L-smooth in a convex set C ⊆ Rd, with step sizes ηt ∈ (0, 1/L], and θt ∈ C for any t ≥ 0;

(ii) g is zero (i.e., f = h), with no constraint on ηt > 0.

Then, for any reference point z ∈ Rd and any stopped-time T ∈ N, it holds that

f(θT )− f(z) ≤
1

2
∑T−1

t=0 ηt

(
∥θ0 − z∥22 − ∥θT − z∥22

)
.

Proof of Theorem 1. The proof parallels the gradient descent case, but relies on standard inequalities involving
the proximal operator, Proxh.
Step 1: Bounding the proximity difference at t and t+ 1. We measure proximity via the Euclidean distance.
By the definition of θt+1 in (18),

∥θt − z∥22 − ∥θt+1 − z∥22 = 2ηt⟨Gηt(θt), θt − z⟩ − η2t ∥Gηt(θt)∥22.
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Step 2: Bounding the criterion difference f(θt)− f(z). By generalized descending lemma (Lemma H2) for
proximal gradient descent, for any z ∈ Rd, and under the respective conditions of (i) and (ii), we have:

(i) : f(θt+1) = f(θt − ηtGηt
(θt)) ≤ f(z) + ⟨Gηt

(θt), θt − z⟩ −
ηt
2
∥Gηt

(θt)∥22,

(ii) : f(θt+1) = f(θt − ηtGηt(θt)) ≤ f(z) + ⟨Gηt(θt), θt − z⟩ − ηt∥Gηt(θt)∥22.

Substituting into result from Step 1, we obtain in both (i) and (ii):

2ηt(f(θt+1)− f(z)) ≤ ∥θt − z∥22 − ∥θt+1 − z∥22.

Additionally, by applying the same lemma with z ← θt, we deduce that f(θt+1) ≤ f(θt). Therefore,

2ηt(f(θT )− f(z)) ≤ ∥θt − z∥22 − ∥θt+1 − z∥22.

Step 3: Aggregating bounds over t = 0, . . . , T − 1. Summing both sides of the result from Step 2 over t < T
results in a telescoping cancellation of squared norm terms, yielding

2
∑T−1

t=0
ηt

(
f(θT )− f(z)

)
≤ ∥θ0 − z∥22 − ∥θT − z∥22.

Notable example: Projected gradient descent. For a closed convex set K ⊆ Rd, choosing

h(x) = IC(x) :=

{
0 : x ∈ C
∞ : x /∈ K

reduces the proximal gradient descent to the projected gradient descent over K, whose iterates follow (11).
As θt+1 ∈ K by definition, if g is L-smooth in Bd(b), Theorem 7 holds, equivalently written as, for any z ∈ K,

g(θ)− g(z) ≤ 1

2
∑T−1

t=0 ηt

(
∥θ0 − z∥22 − ∥θT − z∥22

)
.

Note that this is a same conclusion as in Section 4.2, where we viewed the projected gradient descent as a
special case of mirror descent.

Notable example: ISTA (Iterative soft-thresholding algorithm). Another popular use case of
the proximal gradient descent is ISTA for lasso penalty. Consider f(θ) = 1

2n∥Y −Xθ∥
2
2 + λ∥θ∥1 and write

g(θ) = 1
2n∥Y −Xθ∥

2
2 and h(θ) = λ∥θ∥1. The reason why ISTA is popular is due to its closed form solution

for the proximal update:

Proxηh(θ) = argmin
z∈Rd

1

2η
∥θ − z∥22 + λ∥z∥1 = Sηλ(z) where ∀i ∈ [d], [Sγ(z)]i =


zi − γ : zi > γ

0 : zi ∈ [−γ, γ]
zi + γ : zi < γ

.

Sγ(·) is called a soft-thresholding operator. Note that g(θ) is ∥Σ̂∥op-smooth in Rd. Therefore, with an
appropriate step sizes, Theorem 7 implies

1

2n
∥Y −XθT ∥22 + λ∥θT ∥1 +

1

2ηT
∥θT ∥22 ≤

1

2n
∥Y −Xz∥22 + λ∥z∥1 +

1

2ηT
∥z∥22

for any z ∈ Rd. This suggests an interesting connection between ISTA and the elastic net (Zou and Hastie,
2005), but it is not exactly matched with the popular use of elastic net in practice, which use ‘alpha’ and
‘ℓ1-ratio’ to control the penalty terms.
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7.2 NoLips algorithm
We next consider the NoLips algorithm proposed by Bauschke et al. (2017). While its iterates are the same
as those of mirror descent in (2), the NoLips variant relaxes the strong convexity of ϕ and the smoothness of
f , replacing them with another condition, as explained in Assumption As6. This algorithm can be viewed as
an instance of mirror descent but operates under a slightly different set of assumptions.

Assumption As6 (NoLips setting). Let K and Ω be closed convex sets in Rd such that K ⊆ Ω, whose
interiors are not empty. A function f : Ω→ R is convex on K, and it is differentiable on int(Ω). A function
ϕ : Ω→ R is of Legendre type, and it is continuous on Ω. Furthermore, there exists a constant L > 0 such
that Lϕ− f is convex on K ∩ int(Ω), called the ‘Lipschitz-like convexity condition’.

Theorem 8 (Basic inequality; Last iterate of NoLips algorithm). Under Assumption As6, consider NoLips
iterates which has the same update as (2) with an initialization θ0 ∈ int(Ω) and step sizes ηt ∈ (0, 1/L]. Then,
for any reference point z ∈ K and stopped-time T ∈ N it holds that

f(θT )− f(z) ≤
1∑T−1

t=0 ηt

(
Dϕ(z, θ0)−Dϕ(z, θT )

)
.

In particular, for a constant step size ηt = η, this simplifies to

f(θT )− f(z) ≤
1

ηT

(
Dϕ(z, θ0)−Dϕ(z, θT )

)
.

Proof of Theorem 8. The proof proceeds similarly to Theorem 2, with careful use of Assumption As6.
Step 1: Bounding the proximity difference at t and t+ 1. We measure proximity via the Bregman divergence.
Note that θt ∈ K ∩ int(Ω) for any t, due to Lemma A2. Following the same Step 1 of Theorem 2, we have

ηt⟨∇f(θt), θt+1 − z⟩ ≤ Dϕ(z, θt)−Dϕ(z, θt+1)−Dϕ(θt+1, θt).

Step 2: Bounding the criterion difference f(θt)− f(z). Note that this step is an adaptation of Lemma 5 and
Theorem 1.i in Bauschke et al. (2017). Since Lϕ− f is convex on K ∩ int(Ω) and θt, θt+1 ∈ K ∩ int(Ω), by
Lemma H3, for any t,

f(θt+1) ≤ f(θt) + ⟨∇f(θt), θt+1 − θt⟩+ LDϕ(θt+1, θt).

Moreover, since f is convex on K, we know f(θt) ≤ f(z) + ⟨∇f(θt), θt − z⟩ for any z ∈ K. Therefore, we have

f(θt+1) ≤ f(z) + ⟨∇f(θt), θt+1 − z⟩+ LDϕ(θt+1, θt).

Combining this with the result from Step 1, we obtain

ηt

(
f(θt+1)− f(z)

)
≤ Dϕ(z, θt)−Dϕ(z, θt+1)− (1− Lηt)Dϕ(θt+1, θt).

As ηt ≤ 1/L, this implies
ηt

(
f(θt+1)− f(z)

)
≤ Dϕ(z, θt)−Dϕ(z, θt+1).

Moreover, we know that f(θt+1)− f(θt) for any t, by plugging z ← θt to the above inequality. Thus, we have

f(θT )− f(z) ≤ Dϕ(z, θ0)−Dϕ(z, θt+1).

Step 3: Aggregating bounds over t = 0, . . . , T − 1. Summing both sides of the inequality from Step 2 over
t < T results in a telescoping cancellation of the Bregman divergence terms, yielding∑T−1

t=0
ηt

(
f(θT )− f(z)

)
≤ Dϕ(z, θ0)−Dϕ(z, θT ).

This completes the proof.
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8 Experiments
This section presents empirical results that corroborate our theoretical findings on the relationship between
implicit and corresponding explicit regularization. Three main results are presented: two aspects of optimiza-
tion dynamics in training time; and the prediction risk of the estimators for the test time, as defined in (5).
The Python code to reproduce our experiments is available at https://github.com/100shpaik/basicineq.

Optimization tasks. We consider two iterative algorithms: gradient descent (GD), initialized at 0 ∈ Rd;
and exponentiated gradient descent (EGD) initialized at the uniform distribution π = (1/d, . . . , 1/d) ∈ ∆d.
They are applied to three GLMs (logistic, linear, and Poisson regression) in both underparametrized and
overparametrized (n < d and n > d) regimes. Their explicit regularization counterparts are solved as well:
ridge-regularization for GD; and KL-regularization for EGD.

Notation. We denote the estimators from GD and EGD at iteration T by θT , and the estimators from
explicit regularizations with the parameter λ by θ̂λ. For the exact definition of each estimator, please recall
(1), (3),(6), and (14). The total elapsed time for the iteration T is defined as τ = τT :=

∑T−1
t=0 ηt, which

corresponds to the time in the associated continuous flow for iterative algorithms.

Elapsed time τ and regularization parameter λ. The range of τ and 1/λ covers [10−4, 103] for GD,
and [10−4, 104] for EGD. Throughout, the x-axis of any figure represents the total elapsed time τ but in log10
scale. Further details about the optimization, including learning rate schedules {ηt}∞t=0 and numerical solvers,
can be found in Appendix I.

Data distributions. Training data (X,Y ) ∈ Rn×d × Rn are generated as follows. The entries of the
design matrix X are independently sampled from N (0, 1), and thus the population covariance is Σ = I.
Y is generated from a well-specified model with a true parameter θtrue. The components of θtrue for GD
were independently sampled from Unif[−1, 1]; for EGD they were independently sampled from Unif[0, 1] and
normalized to have a unit ∥ · ∥1-norm, implying θtrue ∈ ∆d. We introduce additional parameter γ > 0 which
controls the signal-to-noise ratio of Y . Then yi for i ∈ [n] independently as the following:

• For linear regression, yi = x⊤i θtrue + γϵi where ϵi ∼ N (0, 1);
• For logistic regression, yi ∼ Bernoulli(pi) where pi = 1/(1 + exp(−γx⊤i θtrue));
• For Poisson regression, yi ∼ Pois(µi) where µi = γx⊤i θtrue.

The specific values of (n, d) and γ are summarized in Table 1. The values of γ were selected to effectively
show the non-monotonic prediction risk curves, as too small or large γ typically leads to monotone curves.

GD EGD
GLM underparam. overparam. underparam. overparam.

(n, d) = (200, 20) (n, d) = (100, 200) (n, d) = (200, 20) (n, d) = (30, 60)
Linear γ = 5.0 γ = 5.0 γ = 1.0 γ = 0.1
Logistic γ = 0.3 γ = 0.5 γ = 1.5 γ = 10.0
Poisson γ = 0.1 γ = 0.15 γ = 1.2 γ = 3.5

Table 1: (n, d) and γ values used in the experiments.

8.1 Training-time envelope functions
We first examine the optimization dynamics of the estimators in relation to the theoretical bounds derived in
Corollary 1(a) and 3. The results are plotted in Figure 1. For each subfigure, three rows represent different
GLM tasks, and two columns represent (n, d)-regimes.

Figure 1(a) displays the results for GD. The red line shows the quantity f(θT ) + ∥θT ∥22/(4τ) for the GD
iterates. This is bounded by the blue and green lines for the ridge-regularized estimators, whose values are
f(θ̂λ) + λ∥θ̂λ∥22 where λ = 1/τ or λ = 1/(4τ) respectively, as suggested in Corollary 1. We can also observe
that the red line closely follows the green line, suggesting more resemblance of the GD and λ = 1/(4τ) in the
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prediction risk figure as well. Meanwhile, it is well known that f(θ̂λ) + λ∥θ̂λ∥22 is a decreasing function of
λ > 0; see Lemma I1.

Figure 1(b) displays similar but more nuanced results for EGD. Again the red line is for the EGD estimator,
whose value is f(θT ) + ∥θT − π∥21/(4τ). The upper bound from Corollary 3 is the orange line with the value
of f(θ̂λ) + λ∥θ̂λ − π∥21 with λ = (d+ 1)/(2τ). However, this bound is much looser than what we have seen in
the GD subfigure. Plotting the blue and green line, which displays the same value as the orange line but with
λ = 1/τ and λ = 1/(4τ), we can empirically see tighter envelope functions.

Figure 1(c) is replacing the ∥θ − π∥21 penalty term from the subfigure (b) to DKL(θ, π), which is more
natural to the KL-regularized estimator. Figure 1(c) is visually very similar compared to Figure 1(b), with a
couple deviation. Precisely speaking, the EGD trajectory (red) is almost unchanged compared to Figure 1(b),
yet the envelopes values from the KL-regularized estimator (blue, green, orange) slightly decreased. With
this more natural penalty, the red line is now more centrally located between the blue and green envelopes.
This finding will be revisited in the prediction risk figure.

Meanwhile, alignments of these curves for very small or large τ are intuitive. When τ → 0, equivalently
λ→∞, both estimators are close to the initialization 0, because there was no update for θT , and θ̂λ should
be near 0 as the penalty is significantly large otherwise. On the other hand, when τ →∞ or λ→ 0), both
estimators achieves the infimum of the original loss function without any penalty.

8.2 Prediction risk
We now compare the prediction risk, defined in (5), using the same estimators plotted in the previous figure.
Figure 2 displays the prediction risk curves against total elapsed time τ . The color scheme of red, blue, and
green is consistent with Figure 1.

Figure 2(a) shows the GD results. The red line for the GD estimator tracks the green line for the EGD
estimator with λ = 1/(4τ) than the blue line. This is consistent with an observation from Figure 1(a), a
closer resemblance of the red and green line in the training envelope functions.

Figure 2(b) for EGD tells a different story, which aligns with the observation in Figure 1(c). The EGD
curve (red) initially follows the λ = 1/τ curve (blue) for small τ , and their minimum risks are also achieved
in similar locations. However, in larger τ , the red line goes in between of the blue and green.

Regarding the minimum prediction risk, while the implicit and explicit regularizations indeed obtain
similar minimum values, they can both be better or worse than the other, depending on the GLM tasks,
(n, d)-regimes, and randomness on the training data.

8.3 Solution path
Providing more granular comparison, we visualize the solution paths during the training, i.e., the evolution of
each component of estimators. Figure 1 compares the solution paths of θT and θ̂λ side-to-side (columns),
for three GLMs (rows) in two (n, d)-regimes (columns). The underparametrized regime displays all d = 20
components, while the overparametrized regime only displays the first 40 components. The log10 scale x-axis
represents τ for the iterative regularization and 1/λ for the explicit regularization.

The solution paths of two estimators look strikingly similar. Yet the equivalence of the solution paths
was not formally proved in the paper, this provides more compelling visual evidence for the deep connection
between the implicit and corresponding explicit regularization. Notably, for EGD and KL-regularization,
many components converge to zero, so that induces sparsity even though the true parameter θ0 is dense.

In the overparametrized regime for GD and ridge-regularization, the logistic and Poisson regression
estimators diverge as τ increases. This is consistent with the known results. For logistic regression on linearly
separable data, the GD solution diverges while its direction converges to the max-margin direction (Soudry
et al., 2018), and linear separability is more likely to happen in an overparmetrized regime. For Poisson
regression, a solution exists if any only if there exists δ ∈ Null(X⊤) such that yi + δi > 0 for i ∈ [n]. In
overparametrized regime, as X⊤ ∈ Rd×n and n < d, it is more likely to be Null(X) = ∅, thus a solution only
exists when yi > 0 for any i.
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(a) GD and ridge-regularization. Use ∥θ∥22 penalty for
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Figure 1: Training loss plus penalty trajectories (y-axis) for total elapsed time τ (x-axis; log10-scale). Each
subfigure has six plots, corresponding to three GLMs in two (n, d)-regimes. The red color represents θT and
the other color represents θ̂λ with different λ’s as a function of τ .
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(b) EGD versus KL-regularization. τ ∈ [10−2, 104].

Figure 2: Prediction risk (y-axis) for total elapsed time τ (x-axis; log10-scale). Each subfigure has six plots,
corresponding to three GLMs in two (n, d)-regimes. The red color represents θT and the other color represents
θ̂λ with different λ’s as a function of τ .
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(b) EGD versus KL-regularization.

Figure 3: Solution path (y-axis) for τ or 1/λ (x-axis; log10-scale). The underparametrized regimes visualized
all d = 20 components of the estimators, but the overparametrized regimes only shows the first 40 components.
The color scheme in each plot pair of the implicit and explicit regularization is the same, as they are matched
to the ordering of the components.
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9 Discussion
We introduced basic inequalities for iterative algorithms as a unifying framework for the optimization
and statistical analysis. This framework allows a comparison between the implicit regularization of the
iterative algorithms and the corresponding explicit regularization in the original optimization problem. We
demonstrated the broad utility of this framework through training dynamics and prediction risk analysis.
However, our results also reveal a trade-off: the generality of basic inequalities and the cost of tightness, as
the resulting bounds are not always as tight as those from some algorithm- or problem-specific observations
in the literature.

This trade-off opens several interesting directions for future research. First, using stronger assumptions
on loss functions, such as strong convexity, may lead to tighter basic inequalities that can refine the analysis.
Conversely, we may extend the applicability of this framework by relaxing assumptions on losses, such
as non-smoothness or non-convexity, as well as using modern models such as deep neural networks and
transformers. These extensions would cover larger loss and algorithms classes from which we can get insights
via basic inequalities.
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A Regarding Section 2: Complements for Theorem 1 and 2

A.1 Gradient descent
Lemma A1 (Descent lemma for gradient descent). Under Assumption As1, consider gradient descent with
iterates (1) and step sizes ηt ∈ (0, 2/L]. Then, for any t ≥ 0,

f(θt+1) ≤ f(θt)− ηt
(
1− L

2
ηt
)
∥∇f(θt)∥22 ≤ f(θt).

Proof of Lemma A1. The L-smoothness of f implies that

f(θt+1) ≤ f(θt) +∇f(θt)⊤(θt+1 − θt) +
L

2
∥θt+1 − θt∥22.

Since θt+1 = θt − ηt∇f(θt) as in (1), it completes the proof.

A.2 Bregman divergence and ϕ

Lemma A2 (Well-definedness of the Bregman divergence induced by ϕ). Under Assumption As2, a function
D(·, v) : Ω→ Rd is well-defined if and only if v ∈ int(Ω).

Proof. By the definition of Legendre type, ϕ is essentially smooth. Also, as ϕ is a proper continuous convex
function over a closed domain Ω, by Theorem 7.1 in Rockafellar (1997), ϕ is a closed function. Therefore, by
Theorem 26.1 in Rockafellar (1997), we know ∂ϕ(v) = ∅ if v /∈ int(Ω), and ∂ϕ(v) = {∇ϕ(v)} if v ∈ int(Ω).

Lemma A3 (Strong convexity and lower bound of Bregman divergence). Under Assumption As2 and As3,
for any u ∈ K and v ∈ K ∩ int(Ω),

Dϕ(u, v) ≥
α

2
∥u− v∥2.

Proof of Lemma A3. Note that Dϕ(·, v) is well-defined by Lemma A2. The desired bound directly follows
from the α-strong convexity of ϕ in K: Dϕ(u, v) = ϕ(u)− ϕ(v)− ⟨∇ϕ(v), u− v⟩ ≥ α

2 ∥u− v∥
2.

A.3 Mirror descent
Lemma A4 (Well-definedness of Dϕ(·, θt) in mirror descent). Under Assumption As2, consider mirror
descent updates with iterates (2). Then, if θ0 ∈ K∩ int(Ω) then θt ∈ K∩ int(Ω) for any t ≥ 0. In other words,

Dϕ(·, θt) : Ω→ R is well-defined for any t ≥ 0.

In particular, when K = Ω, this is equivalent to: if θ0 ∈ int(K) then θt ∈ int(K) for any t ≥ 0.

Proof. Assume θt ∈ K ∩ int(Ω), then Dϕ(·, θt) is well-defined by Lemma A2. Recall θt+1 in (2):

θt+1 = argmin
θ∈K

ηt⟨∇f(θt), θ⟩+Dϕ(θ, θt).

For brevity, define a function F : K → R as F (θ) = ηt⟨∇f(θt), θ⟩+Dϕ(θ, θt). Due to the first order optimality
condition, there exists a subgradient g ∈ ∂F (θt+1) such that ⟨g, θ− θt+1⟩ ≥ 0 for all θ ∈ K. Meanwhile, since
K ⊆ Ω, by Theorem 23.8 in Rockafellar (1997), for any θ ∈ K,

∂F (θ) = ∂
(
ηt⟨∇f(θt), θ⟩

)
+ ∂

(
Dϕ(θ, θt)

)
= ηt∇f(θt)− ∂ϕ(θ)−∇ϕ(θt).

Suppose θt+1 /∈ int(Ω), then ∂ϕ(θt+1) = ∅ since ϕ is of Legendre type, as observed in Lemma A2. Therefore,
∂F (θt+1) is also empty, which is contradictory to the existence of the aforementioned subgradient g. Therefore,
θt+1 ∈ int(Ω), and thus Dϕ(·, θt+1) : Ω → R is well-defined. The proof is completed by mathematical
induction.
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Lemma A5 (Three-point inequality for mirror descent). Under Assumption As2, consider mirror descent
updates with iterates (2). Then, for any z ∈ K and t ≥ 0,

ηt⟨∇f(θt), θt+1 − z⟩ ≤ Dϕ(z, θt)−Dϕ(z, θt+1)−Dϕ(θt+1, θt).

Proof of Lemma A5. For brevity, define F (θ) = ηt⟨∇f(θt), θ⟩+Dϕ(θ, θt). By Lemma A2 and the first order
optimality condition for θt+1,

∇F (θt+1) = ηt∇f(θt) +∇ϕ(θt+1)−∇ϕ(θt) and 0 ≤ ⟨∇F (θt+1), z − θt+1⟩ for any z ∈ K.

Rearranging the terms, this is equivalent to

ηt⟨∇f(θt), θt+1 − z⟩ ≤ ⟨∇ϕ(θt+1)−∇ϕ(θt), z − θt+1⟩ for any z ∈ K.

Since ∇ϕ(θt) and ∇ϕ(θt+1) are well-defined, the standard three-point identity for Dϕ suggests that

Dϕ(z, θt+1) +Dϕ(θt+1, θt)−Dϕ(z, θt) = ⟨∇ϕ(θt)−∇ϕ(θt+1), z − θt+1⟩,

which concludes the proof.

Lemma A6. Under Assumption As2, consider mirror descent updates in (2). Then, for any t ∈ N0 and
z ∈ K,

ηt
(
f(θt)− f(z)

)
≤ ηt⟨∇f(θt), θt − θt+1⟩+Dϕ(z, θt)−Dϕ(z, θt+1)−Dϕ(θt+1, θt).

Proof of Lemma A6. Since f is convex in K, we have

f(θt) ≤ f(z) + ⟨∇f(θt), θt − z⟩ = f(z) + ⟨∇f(θt), θt − θt+1⟩+ ⟨∇f(θt), θt+1 − z⟩.

Multiplying both sides by ηt,

ηt

(
f(θt)− f(z)

)
≤ ηt⟨∇f(θt), θt − θt+1⟩+ ηt⟨∇f(θt), θt+1 − z⟩.

Applying Lemma A5 completes the proof.

Lemma A7 (Descent lemma for mirror descent). Under Assumption As2 and As3, consider mirror descent
updates in (2) with the step sizes ηt ∈ (0, 2α/L]. Then, for any t ∈ N0,

f(θt+1) ≤ f(θt) +
(L
2
− α

ηt

)
∥θt − θt+1∥2 ≤ f(θt).

Proof of Lemma A7. Since f is L-smooth with respect to ∥ · ∥ in K ∩ int(Ω), it follows that

⟨∇f(θt), θt − θt+1⟩ ≤ f(θt)− f(θt+1) +
L

2
∥θt+1 − θt∥2.

Meanwhile, Lemma A5 with z = θt yields

⟨∇f(θt), θt+1 − θt⟩ ≤ −
1

ηt
Dϕ(θt, θt+1)−

1

ηt
Dϕ(θt+1, θt).

Combining these two inequalities, we obtain that

f(θt+1) ≤ f(θt) +
L

2
∥θt+1 − θt∥2 −

1

ηt
Dϕ(θt, θt+1)−

1

ηt
Dϕ(θt+1, θt).

Since both Dϕ(θt, θt+1) and Dϕ(θt+1, θt) are lower bounded by α
2 ∥θt+1 − θt∥2 by Lemma A3, the proof is

completed by noting that ηt ≤ α/L.
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B Regarding Section 3: Complements for Corollary 1 to 4

B.1 Proof for part (d) and (e) of Corollary 1
(d). Note that the projection map ProjS(u) is well-defined as S is closed and convex. Let s ∈ S. From part
(c), the sequence {∥θt − s∥2}∞t=0 is non-increasing and bounded below by 0, hence it converges. This implies
the sequence {θt}∞t=0 is bounded. By the Bolzano-Weierstrass theorem, there exists a subsequence {θti}∞i=1

that converges to a limit point θ∞ := limi→∞ θti . By the continuity of f and the result from part (b), we
have f(θ∞) = limi→∞ f(θti) = inf f . Thus, θ∞ ∈ S.

Now we show the entire sequence converges to θ∞. Since θ∞ ∈ S, part (c) implies that for any t ≥ ti,
∥θt − θ∞∥2 ≤ ∥θti − θ∞∥2. As i→∞, the right-hand side converges to 0. Therefore, limt→∞ ∥θt − θ∞∥2 = 0,
which means limt→∞ θt = θ∞.

Finally, by the continuity of the norm, for any s ∈ S, ∥θ∞−s∥2 = limt→∞ ∥θt−s∥2 ≤ ∥θ0−s∥2. Choosing
s = ProjS(θ0) gives ∥θ∞ − ProjS(θ0)∥2 ≤ ∥θ0 − ProjS(θ0)∥2 = DistS(θ0).

(e). Let P := ProjS(θ0) and v = P − θ∞. For any c ≥ 0, define βc := P + c ·DistS(θ0) · (v/∥v∥2) ∈ S. Since
βc ∈ S, due to part (c) and (d), we must have ∥θ∞ − βc∥2 ≤ ∥θ0 − βc∥2. Since the points θ∞, P , and βc are
collinear by construction,

∥θ∞ − βc∥2 = ∥θ∞ − P∥2 + ∥P − βc∥2 = ∥v∥2 + c ·DistS(θ0).

By the Pythagorean theorem,

∥θ0 − βc∥22 = ∥θ0 − P∥22 + ∥P − βc∥22 = DistS(θ0)
2 + (c ·DistS(θ0))

2
= (1 + c2) ·DistS(θ0)

2.

Substituting these expressions into the inequality ∥θ∞ − βc∥2 ≤ ∥θ0 − βc∥2 gives us that

∥v∥2 + c ·DistS(θ0) ≤
√
1 + c2 ·DistS(θ0).

As c→∞, the term
√
1 + c2 − c→ 0. Therefore, we must have ∥v∥2 ≤ 0, implying v = 0, and thus, P = θ∞.

B.2 Proof for part (d) and (e) of Corollary 2
(d). Fix s ∈ S. From part (c), the sequence {Dϕ(s, θt)}∞t=0 is non-increasing. The lower bound Dϕ(s, θt) ≥
α
2 ∥s− θt∥

2 implies that the sequence {θt}∞t=0 is bounded with respect to ∥ · ∥, and thus bounded with respect
to ∥ · ∥2. Since the sequence lies within the closed set K, it has a convergent subsequence {θti}∞i=1 with limit
θ∞ := limi→∞ θti ∈ K. By continuity of f on K and the result of part (b), we have f(θ∞) = inf f , therefore

θ∞ ∈ S.

We now show that the entire sequence of {θt}∞t=0 converges to θ∞. Suppose this is not true. Then there
exists a subsequence {θtj}∞j=1 and δ > 0 such that ∥θtj − θ∞∥ ≥ δ for all j. With the same argument we
did earlier, there exists a sub-subsequence {θtjk }

∞
k=1 that converges to another limit point θ̃∞ ∈ S such that

∥θ̃∞ − θ∞∥ ≥ δ. Considering two different assumptions given in the theorem statement, we can prove

Dϕ(θ∞, θti)→ 0 as i→∞ :

(i) Suppose S ∩ int(Ω) ̸= ∅. Choose any s ∈ S ∩ int(Ω). Since {Dϕ(s, θti)}∞i=0 is bounded, by Theorem
3.8(ii) in Bauschke et al. (1997), we know that θ∞ ∈ int(Ω) and Dϕ(θ∞, θti)→ 0 as i→∞.

(ii) Suppose for any y ∈ Ω and for any sequence {yn}∞n=1 ⊂ int(Ω) converging to y, Dϕ(y, yn)→ 0. Then
we know Dϕ(θ∞, θti)→ 0 as i→∞.

Then, by its decreasing nature proved in part (b), we conclude that Dϕ(θ∞, θt)→ 0 as t→∞. Similarly we
know that Dϕ(θ̃∞, θt)→ 0. However, these give a contradiction:

max
(
Dϕ(θ∞, θt), Dϕ(θ̃∞, θt)

)
≥ max

(α
2
∥θ∞ − θt∥2,

α

2
∥θ̃∞ − θt∥2

)
≥ α

2

(δ
2

)2
.

Thus, the entire sequence {θt}∞t=0 must converge, and we conclude

lim
t→∞

θt = θ∞.
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(e). Suppose S is a non-empty affine subspace with S ⊂ int(Ω). For brevity, write P := BregProjS(θ0) ∈ S.
Let v := P − θ∞ ≠ 0, then P + cv ∈ S for any c ∈ R since S is affine. Meanwhile, note that ∇ϕ(P ) and
∇ϕ(θ∞) are well-defined since P, θ∞ ∈ S ⊂ int(Ω).

We know three inequalities about P , θ∞ and P + cv. First, the three-point identity of Dϕ gives

Dϕ(P + cv, θ∞)−Dϕ(P + cv, P )−Dϕ(P, θ∞) = ⟨∇ϕ(P )−∇ϕ(θ∞), P + cv − P ⟩.

Second, by the result of part (c), we know that Dϕ(P + cv, θ∞) ≤ Dϕ(P + cv, θ0). Third, as S is affine, the
generalized Pythagorean theorem for Bregman projection holds with equality:

Dϕ(P + cv, θ0) = Dϕ(P + cv, P ) +Dϕ(P, θ0).

Combining these three inequalities, we have

⟨∇ϕ(P )−∇ϕ(θ∞), cv⟩ ≤ Dϕ(P + cv, θ∞)−Dϕ(P + cv, P )−Dϕ(P, θ∞)

≤ Dϕ(P + cv, θ0)−Dϕ(P + cv, P )−Dϕ(P, θ∞)

= Dϕ(P, θ0)−Dϕ(P, θ∞).

Since the above inequality holds for arbitrary c ∈ R, we conclude ∇ϕ(P ) = ∇ϕ(θ∞). This implies

0 = ⟨∇ϕ(P )−∇ϕ(θ∞), P − θ∞⟩ ≥ α∥P − θ∞∥2,

where the last inequality holds by the alternative definition of α-strong convexity. Thus v = 0 and θ∞ = P .

B.3 Proof of Corollary 3
First we will prove (i) in the corollary statement using Corollary 2. Note that the negative entropy function
ϕ is 1-strongly convex with respect to ∥ · ∥1 due to Pinsker’s inequality. Also, it is well known that the
Bregman divergence generated by the negative entropy function is the KL divergence: for a = (a1, . . . , ad)

⊤

and b = (b1, . . . , bd)
⊤,

Dϕ(a, b) =
∑d

j=1
aj log(aj/bj).

Let sj := zj − 1/d. Then
∑d

j=1 sj = 0 and ∥z − π∥1 =
∑d

j=1 |sj |. Observe that

Dϕ(z, π) =

d∑
j=1

zj log(dzj) =

d∑
j=1

(sj + 1/d) log(1 + dsj)

≤
d∑

j=1

(sj + 1/d)dsj = d

d∑
j=1

s2j
(∗)
≤ d

2

( d∑
j=1

|sj |
)2

=
d

2
∥z − π∥21,

where the first inequality holds from log(1 + x) ≤ x for x > −1 (and when dsj = −1, the first inequality
holds with equality where both sides are zero due to (sj + 1/d)-term). The inequality (∗) holds due to follow
reasoning. Let C =

∑
i si ·1(si ≥ 0), then

∑
i si ·1(si < 0) = C and

∑
i |si| = 2C since

∑
i si = 0. Therefore,∑

i

s2i =
∑
i

s2i · 1(si ≥ 0) +
∑
i

s2i · 1(si < 0)

≤
(∑

i

|si|1(si ≥ 0)
)2

+
(∑

i

|si| · 1(si < 0)
)2

= 2C2 = (
∑
i

|si|)2/2.

Thus, as we derived that DKL(z, π) ≤ (d/2)∥z − π∥21 for any z ∈ K where π is uniform, Corollary 2(a)
completes the first half of the proof.

To prove (ii) in the corollary statement, we need a different upper bound on Dϕ(z, π), then following
similar steps as in the proof of Corollary 2(a). By Theorem 1 of Sason (2015), we know that for any z ∈ K,

DKL(z, π) ≤
log d

2
∥z − π∥1.

35



Also, as we have already observed in Corollary 2(a), DKL(z, θT ) ≥ 1
4∥θ0 − θT ∥

2 − 1
2∥z − θ0∥

2. Therefore,

DKL(z, π)−DKL(z, θT ) ≤
log d

2
∥z − θ0∥1 −

1

4
∥θ0 − θT ∥2 −

1

2
∥z − θ0∥2.

Finally, the basic inequality in Theorem 2 completes the proof.

B.4 Lemma for Corollary 4
Lemma B1 (The solution set of the GLM is affine). Consider the GLM loss and estimator in Definition 1.
Suppose that the search space is {θ : θ ∈ K} with an affine set K (e.g., Rd or unbounded simplex), and A is a
strictly convex function. Then the solution set of GLM is either empty or an affine set.

Proof. Say the solution set is S. Suppose S is not empty, and s ∈ S. Define a set U := K ∩ ({s}+ {v ∈ Rd :
Xv = 0}), which is an affine set. Then, it is enough to show that S = U . Clearly, S ⊇ U since the GLM loss
function ℓ(θ) depends on θ only via Xθ.

To show S ⊆ U , take any element u in U , and write v = u− s. Since ℓ(s) = ℓ(u) = minθ∈K ℓ(θ) and ℓ(·) is
a convex function (see Lemma D1), we know that ℓ(s+ cv) = ℓ(s) for any c ∈ (0, 1). Therefore, differentiating
twice with respect to c, we get that

0 =
d2

dc2
ℓ(s+ cv) =

d

dc
⟨v,∇ℓ(s+ cv)⟩ = ⟨v,∇2ℓ(s+ cv)v⟩ =(Xv)⊤diag

(
Ä
(
X(s+ cv)i∈[n]

))
Xv

=

n∑
i=1

(Xv)2i Ä
(
(Xs+ cXv)i

)
.

Since Ä(·) > 0 due to strict convexity, we have Xv = 0. In conclusion, u ∈ ({s}+ {v ∈ Rd : Xv = 0}), which
implies S ⊆ U .

C Generalized Linear Models
Generalized linear models (GLMs) refer to a broader model class related to diverse distributions within the
exponential family, moving beyond the linear regression which is naturally related to the Gaussian distribution.
An univariate exponential family distribution, in its canonical form, models the density or mass function
p(z|ξ) proportional to exp(ξS(z)−A(ξ)). Here, ξ ∈ R is the natural parameter, S : R→ R is the sufficient
statistic (often, and in our focus, S(z) = z), and A : R→ R is the cumulant function. Key properties derived
from A are E[S(Z)] = Ȧ(ξ) and Var(S(Z)) = Ä(ξ), where dots denote differentiation. Familiar examples
include: Gaussian distribution with N(µ, σ2) with fixed σ2 has ξ = µ, S(z) = z, and A(ξ) = ξ2/2; Bernoulli(p)
has ξ = log(p/(1− p)) which is called the logit link, S(z) = z, and A(ξ) = log(1 + eξ); and Poisson(µ) has
ξ = log(µ) which is called the log link, S(z) = z, and A(ξ) = eξ.

In a GLM, the natural parameter ξ is assumed to be linearly related to a predictor vector x ∈ R via
ξ = x⊤θ, where θ ∈ Rd. Under this assumption, estimation of θ is performed by maximum likelihood for the
chosen exponential family.

The formal definition of the GLM loss function and estimator are defined as the following. Given data
(xi, yi)

n
i=1 ∈ Rd ×R and an exponential family characterized by (S,A), assume that ξi = x⊤i θ for i = 1, . . . , n.

The maximum likelihood estimator for θ is

θ̂0 := argmin
θ∈Rd

1

n

n∑
i=1

− log pS,A(yi|x⊤i θ) = argmin
θ∈Rd

1

n

n∑
i=1

(
− S(yi)x⊤i θ +A(x⊤i θ)

)
. (19)

The main article assumes that the sufficient statistic is the identity map, i.e., S(y) = y. However, our
analytical framework can be readily extended to general S by substituting yi with S(yi) for where appropriate.
For instance, the vector Y can be simply replaced with (S(y1), . . . , S(yn))

⊤ in (4).
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D Regarding Section 4.1

D.1 Lemmas
Lemma D1 (Convexity of ℓ and strong convexity of ℓλ). Recall ℓ(θ) and ℓλ(θ) defined in (4) and (6). ℓ(θ) is
a convex function with respect to θ ∈ Rd, and moreover, for any λ > 0, ℓλ(θ) is a 2λ-strongly convex function
with respect to θ ∈ Rd.

Proof of Lemma D1. Easily observe that ∇ℓ(θ) = − 1
nX

⊤(Y −∇A(Xθ)) and ∇2ℓ(θ) = 1
nX

⊤∇2A(Xθ)X.
Note that ∇2A(v) = diag(( d2

du2A(u)|vi
)ni=1) ∈ Rn×n. Since it is a well-known property of exponential families

that A is convex, we know ∇2A(v) ⪰ 0. This implies ∇2ℓ(θ) ⪰ 0, and thus, ℓ(θ) is convex. Moreover, ℓλ(θ)
is a 2λ-strongly convex function for λ > 0 because ∇2ℓλ(θ) = ∇2ℓ(θ) + 2λIn ⪰ 2λIn.

D.2 Proof of Proposition 1
For any ω ∈ R≥0 and u, v ∈ Rd such that Lω(u) ≤ Lω(v), this can be rewritten as

1

n

(
A(Xu)−A(Xv)

)
≤ Y ⊤X

n
(u− v) + ω

(
∥v∥22 − ∥u∥22

)
.

By combining this with Definition 2 of the prediction risk, we have

Risk(u)− Risk(v) =
1

n

(
A(Xu)−A(Xv)− µ⊤

0 Xu+ µ⊤
0 Xv

)
≤ Y ⊤X

n
(u− v) + ω

(
∥v∥22 − ∥u∥22

)
− µ⊤

0

X

n
(u− v) = ϵ⊤

X

n
(u− v) + ω

(
∥v∥22 − ∥u∥22

)
,

which is equivalent to

Risk(u)− Risk(v) ≤
〈X⊤ϵ

n
, u− v

〉
+ ω

(
∥v∥22 − ∥u∥22

)
.

Therefore, as we know Lλ(θ̂λ) ≤ Lλ(θ) for any β by the definition of θ̂λ, the above inequality suggests

Risk(θ̂λ)− Risk(θ) ≤ ϵ⊤X
n
(θ̂ − θ) + λ

(
∥θ∥22 − ∥θ̂∥22

)
. (20)

Finally, we can prove that

ϵ⊤X

n
(θ̂λ − θ) + λ

(
∥θ∥22 − ∥θ̂λ∥22

)
≤ 1

2λ

∥∥∥X⊤ϵ

n

∣∣∣∥22 + 2λ∥θ∥22

from following observation: Using Young’s inequality, i.e., 2ab ≤ ca2 + b2/c for any c > 0, we have

2ϵ⊤
X

n

(
θ̂λ − θ

)
+ 2λ

(
∥β∥22 − ∥θ̂λ∥22

)
= 2
(X
n

⊤
ϵ
)⊤

(θ̂λ − θ) + 2λ
(
∥θ∥22 − ∥θ̂λ∥22

)
≤ 1

λ

∥∥∥X
n

⊤
ϵ
∥∥∥2
2
+ λ∥θ̂λ − θ∥22 + 2λ

(
∥θ∥22 − ∥θ̂λ∥22

)
≤ 1

λ

∥∥∥X
n

⊤
ϵ
∥∥∥2
2
+ λ

(
2∥θ̂λ∥22 + 2∥θ∥22

)
+ 2λ

(
∥θ∥22 − ∥θ̂λ∥22

)
=

1

λ

∥∥∥X
n

⊤
ϵ
∥∥∥2
2
+ 4λ∥θ∥22.

This completes the proof.
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D.3 Proof of Proposition 2
Since ϵi ∼ sG(σ), due to the Remark 1 of Hsu et al. (2012), we know

P
(∥∥∥X⊤ϵ

n

∥∥∥2
2
>
σ2

n

[
tr
(
Σ̂
)
+ 2
∥∥Σ̂∥∥

F

√
δ + 2

∥∥Σ̂∥∥
op
δ
])
≤ e−δ, (21)

with the fact that ∥XX⊤∥F = ∥X⊤X∥F and tr(XX⊤) = tr(X⊤X). Applying this concentration inequality
to Proposition 1 gives us that, with probability at least 1− e−δ,

Risk(θ̂λ)− inf
θ: ∥θ∥2≤b

Risk(θ) ≤ 1

2λ
CsG + 2λb2,

where we define

CsG :=
σ2

n

[
tr
(
Σ̂
)
+ 2
∥∥Σ̂∥∥

F

√
δ + 2

∥∥Σ̂∥∥
op
δ
]

(22)

for brevity. Therefore, when we choose λ =
√
CsG/(2b), i.e., λ as (7), the following holds with probability at

least 1− e−δ:
Risk(θ̂λ)− inf

θ: ∥θ∥2≤b
Risk(θ) ≤ 2b

√
CsG.

D.4 Proof of Theorem 3
Recall that Assumption As4 says yi|xi

ind.∼ Pi.

Ridge-penalized GLM with Gaussian distribution. Since ϵi = yi − µi ∼ N (0, σi), clearly ϵi ∼ sG(σ2
i ).

Thus ϵi ∼ sG(σ2
Dist) with σDist = maxi∈[n] σi. Then the result directly comes from Proposition 2.

Ridge-penalized GLM with Bernoulli distribution. Since ϵi = yi − µi ∈ [−µi, 1− µi], we know
ϵi ∼ sG(1/4). Then the result directly comes from Proposition 2.

Ridge-penalized GLM with Poisson distribution. In Poisson regression case, we need an additional
observation about a high-probability bound of Poisson random variables before we jump into the main proof.
For such an upper bound, we follow a similar process as Appendix A.4 of Lin et al. (2017). Define an event

E := {ϵi < D for all 1 ≤ i ≤ n} = {yi − µi < D for all 1 ≤ i ≤ n} where D = 4
(
∥µ∥∞ + 1/3

)
log n.

Note that D > 1 for n ≥ 3. Then we observe P(Ec) ≤ 1/n from following:

P(Ec) = P(∃i, yi − µi ≥ D) ≤
∑n

i=1
P(yi − µi ≥ D)

(∗)
≤ n× 1/n2 = 1/n.

The inequality (∗) is elaborated more here. By the Poisson concentration result from Pollard (2017), for
X ∼ Pois(µ),

P(X − µ ≥ x) ≤ exp

(
−x

2

2µ
ψBenn

(
x

µ

))
∀x > 0, where ψBenn(x) =

(1 + x) log(1 + x)− x
x2/2

.

Moreover, when x ≥ 1, (Really? Need to check this by my own, at lease once.)

x2

2µ
ψBenn

(
x

µ

)
≥ 1/2

µ+ 1/3
x.

Therefore, we have the following for any 1 ≤ i ≤ n with n ≥ 3, which completes the proof of inequality (∗):

P(ϵi ≥ D) ≤ exp
(
− 1/2

µi + 1/3
D
)
≤ exp

(
− 1/2

∥µ∥∞ + 1/3
D
)
= n−2.
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Now we are ready to finish the main proof. For any δ > 0, define an event

Sδ :=

{∥∥∥X⊤ϵ

n

∥∥∥2
2
>
σ2
Pois

n

[
tr
(
Σ̂
)
+ 2
∥∥Σ̂∥∥

F

√
δ + 2

∥∥Σ̂∥∥
op
δ
]}

where σPois :=
D + ∥µ∥∞

2
.

Since we have observed P(Ec) ≤ 1/n, we can upper bound P(Sδ) as

P(St) = P(Sδ ∩ Ec) + P(Sδ ∩ E) ≤ P(Ec) + P(Sδ|E)P(E) ≤ 1/n+ P(Sδ|E)
(∗∗)
≤ 1/n+ e−δ,

where the inequality (∗∗) holds by following reasoning. Under the event E , we know that {ϵi}ni=1 are still
mutually independent and ϵi ∈ [−µi, D). In other words, ϵi ∼ sG(σ2

i ) with σi = (D + µi)/2 are mutually
independent under E . Then ϵi ∼ sG(σ2

Pois) holds for all 1 ≤ i ≤ n since σPois ≥ σi. Therefore, due to Hsu
et al. (2012) as stated in (21), we have P(Sδ|E) ≤ e−δ, and this implies (∗∗).

Finally, due to an upper bound of P(Sδ) and Proposition 1, with probability at least 1− 1/n− e−δ,

Risk(θ̂λ) ≤ inf
θ: ∥θ∥2≤b

Risk(θ) +
1

2λ
CPois + 2λb2

where we define CPois := (σ2
Pois/n)[tr

(
Σ̂
)
+ 2
∥∥Σ̂∥∥

F

√
δ + 2

∥∥Σ̂∥∥
op
δ] for brevity. Hence choosing λ =

√
CPois/(2b)

gives us that, with probability at least 1− 1/n− e−δ,

Risk(θ̂λ) ≤ inf
θ: ∥θ∥2≤b

Risk(θ) + 2b
√
CPois.

D.5 Analysis on linear regression with closed form solution
This is regarding the analysis of prediction risk for linear regression solution θ̂ = (X⊤X)−1X⊤Y , when it is
well-defined. The risk in linear regression, following the definition (5), is: Risk(θ) = 1

n (−µ
⊤Xθ + 1

2∥Xθ∥
2
2).

Meanwhile, since Y = Xθ0 + ϵ, we know that θ̂ = θ0 + (X⊤X)−1X⊤ϵ, and thus Xθ̂ = Xθ0 + ϵ where
H = X(X⊤X)−1X⊤ is the projection matrix. Therefore,

Risk(θ̂)− Risk(θ0) =
1

n

(
− µ⊤X(θ̂ − θ0) +

1

2
∥Xθ̂∥22 −

1

2
∥Xθ0∥22

)
=

1

2n
∥Hϵ∥22.

By Remark 1 in Hsu et al. (2012), and since H⊤ = H and H2 = H, we know

P
(
∥Hϵ∥22/σ2 > tr(H) + 2

√
tr(H)δ + 2∥H∥opδ

)
≤ e−δ.

We know that tr(H) = tr((X⊤X)−1X⊤X) = d and ∥H∥op = 1 since H is idempotent. Thus we finally obtain
O(σ2d/n) high-probability bound: with probability at least 1− e−δ,

Risk(β̂)− Risk(β0) ≤
σ2

2n

(
d+ 2

√
dδ + 2δ

)
.

E Regarding Section 4.2

E.1 Proof of Proposition 3
Recall the basic inequalities (i) for gradient descent in Theorem 1 and (ii) for projected gradient descent that
follows the same form in Theorem 7, as explained in Section 4.2. These basic inequalities suggest that (i) for
any θ ∈ Rd in gradient descent, or (ii) for any θ ∈ Bd(b) in projected gradient decent, the following holds:

ℓ(θ
(gd)
T ) +

λT
2
∥θ(gd)T − θ∥22 ≤ ℓ(θ) +

λT
2
∥θ∥22

since the initialization is set as θ(gd)0 = 0 ∈ Rd. By the definition of ℓ in (4), this is equivalent to

1

n

(
A(Xθ

(gd)
T )−A(Xθ)

)
≤ Y ⊤X

n

(
θ
(gd)
T − θ

)
+
λT
2

(
∥θ∥22 − ∥θ

(gd)
T − θ∥22

)
.
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Following the same calculation as in the proof of Proposition 1,

Risk(θ
(gd)
T )− Risk(θ) ≤ ϵ⊤X

n

(
θ
(gd)
T − θ

)
+
λT
2

(
∥θ∥22 − ∥θ

(gd)
T − θ∥22

)
.

Since 2ϵ⊤X
n (θ

(gd)
T − θ) ≤ 1

λT
∥ 1nX

⊤ϵ∥22 + λT ∥θ(gd)T − θ∥22 by Young’s inequality, we conclude

Risk(θ
(gd)
T )− Risk(θ) ≤ 1

2λT

∥∥∥X⊤ϵ

n

∥∥∥2
2
+
λT
2
|θ∥22.

E.2 Proof of Proposition 4
We need following auxiliary lemma for simpler computation.

Lemma E1. Given a function g(x) = a
x + bx defined in (0,∞) with a, b > 0. It is known that the function g

obtains its minimum at x∗ =
√
a/b. For y ∈ (0,∞) such that 1/y = 1/x∗ + d with d ≥ 0,

g(y)− g(x∗) = ad2y ≤ ad

Proof of Lemma E1. Note that bx∗ = a/x∗.

g(y)− g(x∗) = a
(1
y
− 1

x∗

)
+ b(y − x∗) = ad− b

(1
y
− 1

x∗

)
yx∗ = d(a− byx∗) = d

(
a− ay

x∗

)
= ad2y.

Also, ad2y ≤ ad since

dy =
(1
y
− 1

x∗

)
y ≤ 1.

Now proceed to the main proof. Combining the high probability upper bound (21) with Proposition 3, we
have

Risk(θ
(gd)
T )− inf

θ: ∥θ∥2≤b
Risk(θ) ≤ 1

2λT
CsG +

λT
2
b2.

with the probability at least 1− e−δ, with CsG defined in (22). Observe that the right hand side achieves the
minimum value of b

√
CsG when λ = λ∗gd. Then we choose T as

T = argmin{t ∈ N : (λ∗gd)
−1 ≤ λ−1

T } =
⌈ 1

ηλ∗gd

⌉
.

Note that the above minimum always exists since λ−1
T = ηT →∞ as T →∞. Meanwhile, there is additional

discretization error due to the nature of gradient descent. Since it is clear that 0 ≤ 1/λT − 1/λ∗gd < η, Lemma
E1 says that ( 1

2λT
CsG +

λT
2
b2
)
−
( 1

2λ∗gd
CsG +

λ∗gd
2
b2
)
≤ CsG

2

( 1

λT
− 1

λ∗gd

)
<
ηCsG

2
.

In conclusion, we proved that

Risk(θ
(gd)
T ) ≤ inf

θ: ∥θ∥2≤b
Risk(θ) + b

√
CsG +

ηCsG

2

with the probability at least 1− e−δ.

E.3 Proof of Theorem 4
The theorem is proved straightforwardly from Proposition 4 once we prove LDist for each distribution. Note
that ∇ℓ(θ) = 1

nX
⊤∇2A(Xθ)X. We have listed A(η) per distribution which was used in Section 4.
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Gaussian distribution. A(ξ) = ξ2/2 and Ä(ξ) = 1. Thus, Ä(Xθ) = In and ∇2ℓ(θ) = Σ̂. Therefore ℓ is
λmax(Σ̂)–smooth.

Bernoulli distribution. A(ξ) = log(1 + eξ) and Ä(ξ) = eξ/(1 + eξ)2 ≤ 1/4. Thus ∇2L(θ) ⪯ 1
4 Σ̂, and

hence ℓ is 1
4λmax(Σ̂)–smooth.

Poisson distribution. A(ξ) = eξ and Ä(ξ) = eξ. For any θ ∈ Bd(b), easily check x⊤i θ ≤ ∥xi∥2∥θ∥2 = b∥xi∥2.
Therefore ∇2A(Xθ) ⪯ exp(b ·max1≤i≤n ∥xi∥2)In, which implies that ℓ is LPois–smooth on Bd(b), where

LPois = exp(b ·max1≤i≤n ∥xi∥2) · λmax(Σ̂).

F Regarding Section 5: Model aggregation

F.1 General results: Bregman-divergence-regularization and mirror descent
Here we state general results for Bregman-divergence-penalized GLM and early-stopped mirror descent on
GLM, not necessarily limited to KL-penalized GLM and early-stopped exponentiated gradient descent on
GLM. In other words, the following two propositions are general versions of Proposition 5 and 7.

Proposition 11 is analogous to Proposition 1 in ridge GLM. Note that taking ϕ(θ) = ∥θ∥22/2 and z = 0
indeed retrieves the conclusion of Proposition 1. Proposition 12 is analogous to Proposition 3 in gradient
descent on GLM. Proposition 12 is analogous to Proposition 3 in early-stopped gradient descent on GLM.

Proposition 11 (Risk bound for Bregman-divergence-penalized GLM estimator). Assume that ϕ is α-strongly
convex with respect to the norm ∥ · ∥ on K for some α > 0. Denote ∥ · ∥∗ as the dual norm of ∥ · ∥. For any
λ > 0, z ∈ K, and a reference point θ ∈ K, the prediction risk of θ̂λ,ϕ,z is bounded by:

Risk(θ̂λ,ϕ,z) ≤ Risk(θ) +
1

λα

∥∥∥X⊤ϵ

n

∥∥∥2
∗
+ 2λDϕ(θ, z).

Proof of Proposition 11. By following the same step as the proof of Proposition 1, but using u, v ∈ Rd and
ω ∈ R≥0 such that ℓω,ϕ,z(u) ≤ ℓω,ϕ,z(v) instead, we have

1

n

(
A(Xu)−A(Xv)

)
≤ Y ⊤X

n
(u− v) + ω

(
Dϕ(v, z)−Dϕ(u, z)

)
and thus

Risk(u)− Risk(v) ≤
〈X⊤ϵ

n
, u− v

〉
+ ω

(
Dϕ(v, z)−Dϕ(u, z)

)
.

Therefore, as ℓλ,ϕ,z(θ̂λ,ϕ,z) ≤ ℓλ,ϕ,z(θ) for any θ due to the definition of θ̂λ,ϕ,z, we have

Risk(θ̂λ,ϕ,z)− Risk(θ) ≤
〈X⊤ϵ

n
, θ̂λ,ϕ,z − θ

〉
+ λ

(
Dϕ(θ, z)−Dϕ(θ̂λ,ϕ,z, z)

)
.

By the definition of dual norm and Young’s inequality, we obtain that〈X⊤ϵ

n
, θ̂λ,ϕ,z − θ

〉
≤
∥∥∥X⊤ϵ

n

∥∥∥
∗
∥θ̂λ,ϕ,z − θ∥

≤
∥∥∥X⊤ϵ

n

∥∥∥
∗
∥θ̂λ,ϕ,z − z∥+

∥∥∥X⊤ϵ

n

∥∥∥
∗
∥θ − z∥

≤ 1

2λα

∥∥∥X⊤ϵ

n

∥∥∥2
∗
+
λα

2
∥θ̂λ,ϕ,z − z∥2 +

∥∥∥X⊤ϵ

n

∥∥∥
∗
∥θ − z∥,

Plugging this inequality to the above inequality about the risk, and also using Dϕ(u, v) ≥ (α/2)∥u− v∥2 by
α-strong convexity of ϕ, we have

Risk(θ̂λ,ϕ,z)− Risk(θ) ≤
∥∥∥X⊤ϵ

n

∥∥∥
∗
∥θ − z∥+ 1

2λα

∥∥∥X⊤ϵ

n

∥∥∥2
∗
+ λDϕ(θ, z) + λ

(α
2
∥θ̂λ,ϕ,z − z∥2 −Dϕ(θ̂λ,ϕ,z, z)

)
≤
∥∥∥X⊤ϵ

n

∥∥∥
∗

√
2

α
Dϕ(θ, z) +

1

2λα

∥∥∥X⊤ϵ

n

∥∥∥2
∗
+ λDϕ(θ, z).
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Finally, by AM-GM inequality, we have

Risk(θ̂λ,ϕ,z)− Risk(θ) ≤ 2
( 1

2λα

∥∥∥X⊤ϵ

n

∥∥∥2
∗
+ λDϕ(θ, z)

)
=

1

λα

∥∥∥X⊤ϵ

n

∥∥∥2
∗
+ 2λDϕ(θ, z),

completing the proof.

Proposition 12 (Risk bound for early-stopped mirror descent GLM estimator). Under Assumptions As2 and
As3, consider mirror descent iterates (2) initialized at z ∈ K with a constant step size satisfying η ∈ (0, α/L].
Let θ(md)

T be the T -th iterate. Then, for any T ∈ N and θ ∈ K,

Risk(θ
(md)
T )− Risk(θ) ≤ 1

2λTα

∥∥∥X⊤ϵ

n

∥∥∥2
∗
+ λTDϕ(θ, z). (23)

Proof of Proposition 12. The proof is similar to that of Proposition 3. Applying the basic inequality of
Theorem 2, we obtain that for any θ ∈ K:

ℓ(θ
(md)
T )− ℓ(θ) ≤ λTDϕ(θ, z)− λTDϕ(θ, θ

(md)
T ).

Similar to the proof of Proposition 11, we deduce that

Risk(θ
(md)
T )− Risk(θ) ≤

〈
X⊤ϵ

n
, θ

(md)
T − θ

〉
+ λT

(
Dϕ(θ, z)−Dϕ(θ, θ

(md)
T )

)
≤
∥∥∥∥X⊤ϵ

n

∥∥∥∥
∗

∥∥∥θ(md)
T − θ

∥∥∥+ λT

(
Dϕ(θ, z)−Dϕ(θ, θ

(md)
T )

)
≤ 1

2λTα

∥∥∥∥X⊤ϵ

n

∥∥∥∥2
∗
+
λTα

2

∥∥∥θ(md)
T − θ

∥∥∥2 + λT

(
Dϕ(θ, z)−Dϕ(θ, θ

(md)
T )

)
≤ 1

2λTα

∥∥∥∥X⊤ϵ

n

∥∥∥∥2
∗
+ λTDϕ(θ, z),

completing the proof.

F.2 Proof of Theorem 5
This is a special case of Proposition 11. Note that ∥ · ∥∞ is the dual norm of ∥ · ∥1 and KL divergence is
1-strongly convex with respect to ∥ · ∥1 by Pinsker’s inequality. Therefore, Proposition 11 suggests that, for
any λ > 0 and any θ ∈ ∆d,

Risk(θ̂λ)− Risk(θ) ≤ 1

λ

∥∥∥X⊤ϵ

n

∥∥∥2
∞

+ 2λDKL(θ, π).

F.3 Proof of Proposition 6
Recall that Proposition 5 gives an upper bound

Risk(θ̂λ)− Risk(θ) ≤ 1

λ

∥∥∥X⊤ϵ

n

∥∥∥2
∞

+ 2λDKL(θ, π).

Now consider sub-Gaussian noise ϵi ∼ sG(σ). Write X = (xij)i,j and v := X⊤ϵ = (v1, . . . , vd)
⊤. Then

vj =
∑n

i=1 xijϵi and E[vj ] = 0 due to the mean-zero property of ϵi. Check that vj ∼ sG(σ∥X·j∥2) due to the
following: for any α ≥ 0,

E
[
exp(αvj)

]
= E

[
exp(α

n∑
i=1

xij ϵi)
]
=

n∏
i=1

E
[
exp(αxijϵi)

]
≤

n∏
i=1

exp
(α2x2ij

2
σ2
)
= exp

(α2

2
∥X·j∥22σ2

)
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where X·j denotes the j-th column of X. Then, by the concentration inequality of the maximum of possibly
dependent sub-Gaussian random variables, we know that

P
(
∥X⊤ϵ∥∞ = max

1≤j≤d
|vj | ≤ σ max

1≤j≤d
∥X·j∥2

√
2(log(2d) + δ)

)
≥ 1− e−δ.

Since max1≤j≤d ∥X·j∥2 ≤
√
n, we have

P

(
1

n
∥X⊤ϵ∥∞ ≤ σ

√
2(log(2d) + δ)

n

)
≥ 1− e−δ. (24)

Therefore, with probability at least 1− e−δ,

Risk(θ̂λ)− inf
θ: DKL(θ,π)≤b

Risk(θ) ≤ 2σ2(log(2d) + δ)

nλ
+ 2λb.

Thus, when we choose

λ = σ

√
log(2d) + δ

nb
,

we know the following holds with probability at least 1− e−δ:

Risk(θ̂λ)− inf
θ: DKL(θ,π)≤b

Risk(θ) ≤ 4σ

√
b(log(2d) + δ)

n
.

This concludes the proof of Proposition 6.

F.4 Proof of Theorem 5
σDist has already been discussed in Theorem 3. Thus, the result directly comes from Proposition 6.

F.5 Proof of Proposition 7
This is a direct consequence of Proposition 12, since the KL divergence is 1-strongly convex with respect to
the ∥ · ∥1-norm, whose dual norm is ∥ · ∥∞.

F.6 Proof of Proposition 8
Recall that we have already assumed max1≤j≤d ∥X·j∥2 ≤

√
n. Thus, we can use the high-probability upper

bound for 1
n∥X

⊤ϵ∥∞ obtained in (24). Plugging in this upper bound to Proposition 7, we have that, with
probability at least 1− e−δ,

Risk(θ
(egd)
T )− inf

θ: DKL(θ,π)≤b
Risk(θ) ≤ σ2(log(2d) + δ)

nλT
+ λT b. (25)

Of course, if T = 1/λ∗egdη is an integer, then λT = λ∗egd, and the desired excess risk bound follows. Otherwise,
by taking T = ⌈1/(λ∗egdη)⌉ as in the proposition statement, we know that

1

λ∗egd
≤ 1

λT
≤ 1

λ∗egd
+ η.

This further implies the following bound on the discretization error

σ2(log(2d) + δ)

nλT
+ λT b− 2σ

√
b(log(2d) + δ)

n

= bλ2egd∗λT

(
1

λT
− 1

λ∗egd

)2

≤ bη2λ3egd∗ ≤ b
λ3egd∗

L2
Dist

=
σ3
Dist

L2
Dist

· (log(2d) + δ)3/2

n3/2b1/2
.

This completes the proof of Proposition 8.
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F.7 Proof of Theorem 6
Based on Proposition 8, it suffices to verify that for each of three distributions (i) to (iii), the loss function
ℓ(θ) is LDist-smooth with respect to ∥ · ∥1 on ∆d. Therefore, similar to the proof of Theorem 4, it suffices to
verify that

∥∇2ℓ(θ)∥1→∞ =
∥∥∥ 1
n

n∑
i=1

Ä(x⊤i θ)xix
⊤
i

∥∥∥
1→∞

≤ LDist, ∀θ ∈ ∆d.

Gaussian distribution. Ä(ξ) = 1. Therefore,∥∥∥ 1
n

n∑
i=1

Ä(x⊤i θ)xix
⊤
i

∥∥∥
1→∞

= ∥Σ̂∥1→∞ =
1

n
max
j∈[d]

n∑
i=1

x2ij =
1

n
max
j∈[d]
∥X·j∥22 ≤ 1,

where the last inequality holds due to the assumption max1≤j≤d ∥X·j∥2 ≤
√
n.

Bernoulli distribution. Ä(ξ) = eξ/(1 + eξ)2 ∈ [0, 1/4], hence∥∥∥ 1
n

n∑
i=1

Ä(x⊤i θ)xix
⊤
i

∥∥∥
1→∞

≤ 1

4
∥Σ̂∥1→∞ =

1

4n
max
j∈[d]

n∑
i=1

x2ij =
1

4n
max
j∈[d]
∥X·j∥22 ≤

1

4
.

where the last inequality holds due to the assumption max1≤j≤d ∥X·j∥2 ≤
√
n.

Poisson distribution. Ä(ξ) = eξ. Therefore, for any θ ∈ ∆d:∥∥∥ 1
n

n∑
i=1

Ä(x⊤i θ)xix
⊤
i

∥∥∥
1→∞

≤
∥∥∥ 1
n

n∑
i=1

exp(∥xi∥∞)xix
⊤
i

∥∥∥
1→∞

=
1

n
max
j∈[d]

n∑
i=1

exp(∥xi∥∞)x2ij .

This completes the proof for (i) to (iii).

G Regarding Section 6: Random model selection

G.1 Proof of Proposition 9
By definition of θ̂λ, for any θ ∈ P(B):

Eβ∼θ̂λ
[R̂n(β)]− Eβ∼θ[R̂n(β)] ≤ λ

(
DKL(θ, π)−DKL(θ̂λ, π)

)
.

Meanwhile, defining a measure ν := θ − θ̂λ over B,

Eβ∼θ̂λ
[R(β)]− Eβ∼θ[R(β)] =

∫
B
−R(β)ν(dβ) =

∫
B

[
R̂n(β)−R(β)

]
ν(dβ) +

∫
B
−R̂n(β)ν(dβ).

Therefore, by the above inequality,

Eβ∼θ̂λ
[R(β)]− Eβ∼θ[R(β)] ≤

∫
B

[
R̂n(β)−R(β)

]
ν(dβ) + λ

(
DKL(θ, π)−DKL(θ̂, π)

)
≤
∥∥∥R̂n −R

∥∥∥
L∞(B)

∥ν∥L1(B) + λ
(
DKL(θ, π)−DKL(θ̂λ, π)

)
≤
∥∥∥R̂n −R

∥∥∥
L∞(B)

∥θ − π∥L1(B) +
∥∥∥R̂n −R

∥∥∥
L∞(B)

∥π − θ̂λ∥L1(B)

+ λ
(
DKL(θ, π)−DKL(θ̂λ, π)

)
≤ 1

λ

∥∥∥R̂n −R
∥∥∥2
L∞(B)

+
λ

2
∥θ − π∥2L1(B) +

λ

2
∥π − θ̂λ∥2L1(B)

+ λ
(
DKL(θ, π)−DKL(θ̂λ, π)

)
≤ 1

λ

∥∥∥R̂n −R
∥∥∥2
L∞(B)

+ 2λDKL(θ, π),
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where the penultimate inequality uses Young’s inequality and the last inequality follows from Pinsker’s
inequality. This completes the proof.

G.2 Proof of Proposition 10
Recall that exponentiated gradient descent is a special case of mirror descent. Due to the basic inequality for
mirror descent in Theorem 2, we have

E
β∼θ

(egd)
T

[R̂n(β)]− Eβ∼θ[R̂n(β)] ≤ λT
(
DKL(θ, π)−DKL(θ, θ

(egd)
T )

)
.

Similar to the proof of Proposition 9, defining a measure ν := θ − θ(egd)T over P(B),

E
β∼θ

(egd)
T

[R(β)]− Eβ∼θ[R(β)] =

∫
B
−R(β)ν(dβ) =

∫
B

[
R̂n(β)−R(β)

]
ν(dβ) +

∫
B
−R̂n(β)ν(dβ).

Therefore, by the above inequality,

E
β∼θ

(egd)
T

[R(β)]− Eβ∼θ[R(β)] ≤
∫
B

[
R̂n(β)−R(β)

]
ν(dβ) + λT

(
DKL(θ, π)−DKL(θ, θ

(egd)
T )

)
≤
∥∥∥R̂n −R

∥∥∥
L∞(B)

∥ν∥L1(B) + λT
(
DKL(θ, π)−DKL(θ, θ

(egd)
T )

)
≤ 1

2λT

∥∥∥R̂n −R
∥∥∥2
L∞(B)

+
λT
2
∥ν∥2L1(Θ) + λT

(
DKL(θ, π)−DKL(θ, θ

(egd)
T )

)
≤ 1

2λT

∥∥∥R̂n −R
∥∥∥2
L∞(B)

+ λTDKL(θ, π),

which completes the proof.

H Regarding Section 7: Complements for Theorem 7 and 8

H.1 Proximal gradient descent
Lemma H1. Consider proximal gradient descent with iterates (18). Then, for any θ ∈ Rd and η > 0,

Gη(θ) ∈ ∇g(θ) + ∂h(θ − ηG(θ))

where ∂h represents the subgradients of h.

Proof of Lemma H1. Recall the definition of the proximal operator and Gη(θ) =
1
η (θ − Proxηh(θ − η∇g(θ)).

By the first order optimality condition for the proximal operator,

0 ∈
(
Proxηh(θ − η∇g(θ))− (θ − η∇g(θ))

)
+ η∂h(θ − η∇g(θ)),

which means
0 ∈

(
∇g(θ)−Gη(θ)

)
+ ∂h(θ − η∇g(θ)).

This concludes the proof.

Lemma H2. For a composite function f = g + h with convex differentiable g, and convex but potentially
non-differentiable h, suppose one of the following holds:

(i) g is L-smooth in a convex set C ⊆ Rd, with step sizes ηt ∈ (0, 1/L];

(ii) g is zero (i.e., f = h), with no constraint on η > 0.

Then, respectively, for any z ∈ Rd and

45



(i) for any θ ∈ C such that θ − ηGη(θ) ∈ C;

(ii) for any θ ∈ Rd,

the following holds, respectively:

(i) : f(θ − ηGη(θ)) ≤ f(z) + ⟨Gη(θ), θ − z⟩ −
η

2
∥Gη(θ)∥22,

(ii) : f(θ − ηGη(θ)) ≤ f(z) + ⟨Gη(θ), θ − z⟩ − η∥Gη(θ)∥22.

Proof of Lemma H2. (i) By the L-smoothness of g over C,

g(θ − ηGη(θ)) ≤ g(θ) + ⟨∇g(θ),−ηGη(θ)⟩+
L

2
∥ηGη(θ)∥22.

Moreover, from the convexity of g over Rd, we know g(θ) ≤ g(z) + ⟨∇g(θ), θ − z⟩ for any z ∈ Rd. Combining
these two inequality gives that

g(θ − ηGη(θ)) ≤ g(z) + ⟨∇g(θ), θ − z⟩+ ⟨∇g(θ),−ηGη(θ)⟩+
L

2
∥ηGη(θ)∥22

≤ g(z) + ⟨∇g(θ), θ − z⟩+ ⟨∇g(θ),−ηGη(θ)⟩+
η

2
∥Gη(θ)∥22. (∵ η ≤ 1/L.)

Meanwhile, from Lemma H1, we know Gη(θ) − ∇g(θ) ∈ ∂h(θ − ηGη(θ)). Thus, by the definition of the
subgradient,

h(θ − ηGη(θ)) ≤ h(z)− ⟨Gη(θ)−∇g(θ), z − (θ − ηGη(θ))⟩
= h(z) + ⟨∇g(θ), z − θ + ηGη(θ)⟩+ ⟨Gη(θ), θ − z⟩ − η∥Gη(θ)∥22.

Therefore, as f(θ − ηGη(θ)) = g(θ − ηGη(θ)) + h(θ − ηGη(θ)), combining the upper bounds on g and h gives
us the following result, which concludes the proof for (i):

f(θ − ηGη(θ)) ≤ g(z) + h(z) + ⟨Gη(θ), θ − z⟩ −
η

2
∥Gη(θ)∥22.

(ii) Note that g ≡ 0 implies that g is L-smooth over Rd with any L > 0. Recall the upper bound on
h(θ−ηGη(θ)) in the proof of (i). As g ≡ 0, note that ∇g(θ) = 0 for any θ. Thus, the intermediate observation
about h(θ − ηGη(θ)) from the proof of (i) gives that

h(θ − ηGη(θ)) ≤ h(z) + ⟨Gη(θ), θ − z⟩ − η∥Gη(θ)∥22.

H.2 NoLips Mirror descent
Lemma H3 (Extended descent lemma for NoLips; Lemma 1 in Bauschke et al. (2017)). Under Assumption
As6, for any u, v ∈ K ∩ int(Ω),

f(u) ≤ f(v) + ⟨∇f(v), u− v⟩+ LDϕ(u, v).

Proof of Lemma H3. Due to the convexity of Lϕ− f on K ∩ int(Ω), we know that

⟨L∇ϕ(v)−∇f(v), u− v⟩ ≤ (Lϕ(u)− f(u))− (Lϕ(v)− f(v)).

Rearranging this concludes the proof:

f(u) ≤ f(v) + ⟨f(v), u− v⟩+ L
(
ϕ(u)− ϕ(v)− ⟨ϕ(v), u− v⟩

)
= f(v) + ⟨f(v), u− v⟩+ LDϕ(u, v).
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I Regarding Section 8: Complements for Experiments details

Lemma I1 (Regularized objective function evaluated at θ̂λ). For a convex function f : Rd → R, define
θ̂λ = argmin f(θ) + λ∥θ∥22 for λ > 0. Then a function g : [0,∞) → R where g(λ) = f(θ̂λ) + λ∥θ̂λ∥22 is a
non-decreasing function of λ > 0.

Proof of Lemma I1. Choose any λs < λb in [0,∞). By definition, g(λs) = f(θ̂λs
) + λs∥θ̂λs

∥22 ≤ f(θ̂λb
) +

λs∥θ̂λb
∥22. Therefore,

g(λb)− g(λs) = f(θ̂λb
) + λb∥θ̂λb

∥22 − g(λs) ≥ (λb − λs)∥θ̂λb
∥22 ≥ 0,

whose equality holds if and only if θ̂λb
= 0.

Optimization details: Implicit regularization. For iterative algorithms, learning rate schedules are
used to cover small τ with high resolution and to reach large τ with less iterations at the same time. Table
2 and 3 summarize the learning rate schedules used in each combinations of GD and EGD for (i) three
GLMs and (ii) underparamterized or overparametrized regime. The schedule {(η(i), T (i))}ki=1 means that the
learning rate η(1) is used for T (1) iterations, then η(2) is used for the next T (2) iterations, and so on.

GD

GLM underparam. overparam.

(n, d) = (200, 20) (n, d) = (100, 200)

Linear {(10−4, 104), (10−3, 105), (10−2, 105)} same as underparm.

Logistic same as Linear same as underparm.

Poisson same as Linear {(10−4, 105), (2× 10−4, 2× 105), (5× 10−4, 2× 106)}

Table 2: GD learning rate schedules.

EGD

GLM underparam. overparam.

(n, d) = (200, 20) (n, d) = (30, 60)

Linear {(10−4, 105), (10−3, 105), (10−2, 105), (10−1, 105)]} same as underparm.

Logistic same as Linear same as underparm.

Poisson same as Linear same as underparm.

Table 3: EGD learning rate schedules.

Optimization details: Explicit regularization. In both GD and EGD, for all (i) three GLMs and
(ii) underparamterized or overparametrized regime, we solved 500 ridge- or KL-regularized optimization
problems with different regularization parameter λ, where λ’s are log-evenly spread through [10−4, 104].
We used scipy.optimize.minimize function from SciPy library, where GD used L-BFGS-B solver and
EGD used SLSQP solver. For the options for each solver, the GD always used (maxiter, ftol, gtol) =
(2 × 104, 10−15, 10−8). The EGD used different options per GLM. Linear regression used (maxiter, ftol,
eps) = (4 × 104, 2 × 10−14, 2 × 10−8) as a default, while used more conservative option of (maxiter, ftol,
eps) = (105, 10−14, 10−8) for λ ∈ (10−2, 10), as we observed the optimization does not converge in those λ.
Logistic regression used (maxiter, ftol, eps) = (4× 104, 10−13, 10−7). Poisson regression used (maxiter, ftol,
eps) = (6× 104, 10−14, 10−8).
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