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Abstract

Implicit regularization, the inductive bias of a learning algorithm to prefer simpler solutions over
more complex ones, is a topic of huge interest in statistic modeling and modern machine learning. A
prominent approach for its analysis is to relate it to the corresponding explicit regularization scheme,
yet a unifying framework to formalize this connection has been absent. We introduce such a framework,
using the so-called basic inequality, a key tool that connects the dynamics of an optimization algorithm
to its explicit regularization counterpart. While related inequalities are fundamental in optimization
theory, we isolate and highlight a specific form as a simple and versatile tool, which we believe has been
underappreciated. Specifically, for a given iterative algorithm, a basic inequality provides an upper bound
on the objective value at its last iterate, f(6r), with respect to an arbitrary reference point z. This bound
is characterized by two factors: a geometry-aware distance between the initialization, the last iterate Or,
and the reference point z; and accumulated step sizes, representing total elapsed time of the algorithm.
We demonstrate the utility of this framework in both optimization and statistical perspective, in the
application of training dynamics, prediction risk of statistical models, and randomized model selection.
We supplement our theoretical results with experiments on generalized linear models with gradient descent
and exponential gradient descent.

1 Introduction

This paper introduces basic inequalities for iterative optimization algorithms, a framework that connects the
implicit and explicit regularization. Given an optimization problem, ming f(6), our focus is on

Or and é,\,

where 07 is the last iterate of an algorithm, and 6, = arg ming f(0) + Ag(0) is an explicitly regularized solution
with a penalty ¢g(-) and regularization parameter A > 0.

The concept of implicit reqularization (Neyshabur et al., 2014), where the optimization algorithm itself
implicitly induces the bias of the model, has been a persistent theme in statistics and optimization literature.
This is a specific instance of broader inductive bias of models (Baxter, 2000), which describes model capacity
and generalization. A well-known example of implicit regularization is early stopping of iterative algorithms,
which appeared in the neural network community (Prechelt, 2002) and later more formally analyzed in various
statistical context (Zhang and Yu, 2005; Yao et al., 2007; Raskutti et al., 2014). Implicit regularization is
distinct from explicit reqularization, a classical approach of adding a penalty term to the loss function, whose
statistical properties have been studied more in the literature.

One major research direction has been to understand implicit regularization by connecting it to explicit
regularization (Lemaire, 1996; Gunasekar et al., 2018). While connections have been usually established with
algorithm- or loss-specific context (Suggala et al., 2018; Ji and Telgarsky, 2019; Ali et al., 2019), a general
and unifying framework is absent. This paper proposes that basic inequalities can serve as this framework.

For a given algorithm, a basic inequality bounds the objective value at the last iterate, f(6r) relative
to any reference point z. This bound is governed by two factors: a geometry-aware distance between the



initialization, last iterates 67, and z; and accumulated step sizes, which represents total elapsed time of the
algorithm. For example, gradient descent with initialization at the origin in R¢ and a constant step size 7 has
the following basic inequality:

£0r) = 1) < 5 (141 = 10 = =13).

The utility of this inequality is its flexibility of strategically choosing z. Relationships akin to our basic
inequalities are foundational in the convergence analysis of iterative algorithms (Nesterov, 2003; Nemirovski
et al., 2009; Reddi et al., 2019) and are implicit in the analyses of several works on implicit regularization (Ji
and Telgarsky, 2019; Ji et al., 2020; Wu et al., 2024, 2025). Our contribution is to highlight these inequalities
and demonstrate their broad utility for both optimization and statistical analysis of implicit regularization.

Summary of Contributions. Our contributions are as follows.

e We introduce basic inequalities for the last iterate of iterative algorithms (Section 2 and 7), including
gradient descnet and mirror descent. While related inequalities are fundamental in optimization theory,
we present and highlight specific forms that provide a simple yet general framework for connecting
implicit and explicit regularization. The form we present deserves greater attention, as they can be
used to more universal applications.

e We demonstrate the utility of basic inequalities through several applications.

— Training dynamics (Section 3). We bound the combined loss and penalty term of the iterates by
explicit regularization estimators, and analyze the path of the iterates in spirit of Lemaire (1996).

— Generalized linear models (Section 4 and 5). We derive high-probability prediction risk bounds for
early-stopped gradient descent and exponentiated gradient descent, where the rates are matched
with their explicit regularization counterparts, ridge and KL-divergence regularization, respectively.

— Randomized model selection (Section 6). We derive excess risk bounds for random model selection
problem with either using exponentiated gradient descent or KL-divergence regularization.

e We conduct simulation experiments across linear, logistic, and Poission regressions in both under-
parametrized and overparamterized regimes (Section 8). The result back up our theory, showing a
strong empirical similarity between implicit and explicit regularizations in their training dynamics,
prediction risk curves, and solution paths.

Related Work. Connecting implicit regularization to corresponding well-understood explicit regularization
has been studied in the literature for long time, includes characterizing the limit points and solution paths of
algorithms. For overparametrized linear regression, gradient descent is known to converge to the min-Ls norm
solution (Lemaire, 1996). It is generalized to mirror descent, which converges to min-Bregman-divergence
solution (Gunasekar et al., 2018; Azizan and Hassibi, 2019). In some cases, more direct equivalence of the
entire solution path can be established, for instances, Least Angle Regression (LARS) algorithm generates
the lasso path (Efron et al., 2004). Regarding an Lo-penalty, more recent work has focused on quantifying
the Lo-distance between implicitly and explicitly regularized estimators for strongly convex loss functions
(Suggala et al., 2018), while for linear regression, more tighter comparison is possible (Ali et al., 2019).

For classification problems, implicit regularization often becomes a max-margin solution. For instance,
AdaBoost with an infinitesimal step size converges to Li-max-margin binary classifier (Zhang and Yu, 2005).
In logistic regression with linearly separable data, gradient descent converges in direction to the max-margin
solution (Soudry et al., 2018; Ji and Telgarsky, 2019), with analogous results for mirror descent (Sun et al.,
2023). For a broader loss class, when the risk does not achieve its infimum, the gradient descent path and a
corresponding explicit regularization path converge to the same direction (Ji et al., 2020). Recent work on
logistic regression has investigated the phase transitions of gradient descent with large step sizes (Wu et al.,
2024) and the existence of beneficial early stopping time with respect to excess risk (Wu et al., 2025).

The analysis of explicit regularization is itself a mature field. For ridge regression, the out-of-sample and
in-sample prediction risk bounds has been precisely characterized due to its closed form solution (Ali et al.,
2019), with sharp asymptotic results available from Marchenko-Pastur theorem in random matrix theory



(Dobriban and Wager, 2018; Hastie et al., 2022). For Lo-regularized logistic regression, the self-concordance
property of the loss has been used to prediction risk bounds (Bach, 2010). For lasso (Tibshirani, 1996),
which uses an Li-penalty, a key observation for non-asymptotic analysis is the basic inequality (Bithlmann
and Van De Geer, 2011), derived from the estimator’s zero-order optimality condition. For a squared loss
f(8) = (1/2n)|]Y — X062 and the lasso estimator 0y,

1 . 1 A i
5o [ X s =05 < —(¥ = X0,X(0x = 8)) + A1Iollx — 0:11).

Regarding the in-sample risk of 85, this inequality leads to the slow rate of O(y/(logd)/n), and a fast rate of
O((logd)/n) under additional assumptions on X (van de Geer and Bithlmann, 2009; Bithlmann and Van
De Geer, 2011). We present the above inequality to emphasize its structural similarity to the basic inequalities
for iterative algorithms that we introduce.

The use of Kullback-Leibler (KL) divergence penalty as an explicit regularization in statistical learning is
not as popular as /P regularization. Nevertheless, it serves as a powerful tool for certain tasks, especially
those involving probability distributions over a collection of candidate models, and is a cornerstone of the
PAC-Bayes framework (Alquier, 2024). Its two prominent applications are model aggregation (Wolpert, 1992;
Breiman, 1996) and randomized model selection (Leung and Barron, 2006; Zhang, 2006), where we seek an
optimal weights to predictors from a given base models. Model aggregation uses a convex combination of
the base predictors as the final predictor, according to the learned probability vector. On the other hand,
in randomized model selection, a single model is randomly drawn according to the probability vector for
prediction. In both tasks, KL penalty regularizes the probability vector by penalizing its deviation from a
prior distribution, which is typically chosen to be uniform.

2 Basic inequalities for iterative optimization algorithm

This section introduces a set of basic inequalities. While similar relationships are used in the convergence rate
analysis in the optimization literature as mentioned in the introduction, their broad utility as a standalone
framework has been largely overlooked. We believe these inequalities deserve greater attention as simple yet
fundamental framework for implicit regularization analysis, as demonstrated in the sections that follow.

Definitions and notations. We introduce definition and notation being used in the paper. For u,v € R?,
their inner product is (u,v) := u'v. For a set S C R?, its interior and boundary are denoted by int(S) and
0S. The size of a set S is denoted as |S|. A d-dimensional ball of radius r > 0 centered at p € R? is defined
as Ba(r;p) == {0 € R?: [|0 — pll2 < 7}, and By(r) := Ba(r;0). We denote Ny = {0} UN = {0,1,2,...}, and
[n] :={1,2,...,n} for n € N.

A function f: Q — R is convex if f(az+ (1 —a)y) < af(z) + (1 — a)f(y) for any x,y € Q and « € [0, 1].
It is strictly convex if the inequality holds strictly for  # y and « € (0,1). The subgradient of a convex
function f at x is denoted by 9f(x). A function f is essentially strictly convex if it is strictly convex on
all convex subsets of {z : df(x) # 0}. A function f: Q C R? — R is essentially smooth if it satisfies three
conditions: (i) int() # 0; (ii) f is differentiable on int(€2); and (iii) lim;_ ||V f(24)|l2 = oo for any sequence
{z;}32, C Q converging to a point z € 9Q. A function f is of Legendre type if it is both essentially smooth
and essentially strictly convex (Rockafellar, 1997). A differentiable function f is called a-strongly convex with
respect to a norm || - || with some a > 0, if f(y) > f(z) + (Vf(z),y — ) + $|lz — y||*. For a differentiable
function f:R? — R, it is L-smooth with respect to a norm || - || if the gradient Vf : R? — R? is L-Lipschitz
with respect to || - || and its dual norm || - ||« with some L > 0, i.e., |Vf(z) = Vf(y)|l« < L||x — y|| for any
z,y € RY. When the norm is not specified, the Euclidean norm || - ||z is assumed.

A random variable Z is sub-Gaussian with parameter o2, if Elexp(a(Z — E[Z]))] < exp(a?0?/2) for
all o € R, denoted Z ~ sG(c?). For a matrix X € R™*4 we define the empirical covariance matrix as
Yx = 1XTX € R4 often denoted ¥ when X is clear from context.

)

2.1 Basic inequality for early-stopped gradient descent

Gradient descent (Euler, 1792; Cauchy et al., 1847) is one of the most widely used algorithms for both convex
and non-convex optimization problems. Given a differentiable loss function f : RY — R, the gradient descent



algorithm with an initialization 6y € R? and step sizes (1¢)52, generates iterates according to
Orp1 =0t =V f(0:). (1)

Our first basic inequality, given below, describes a remarkably simple yet powerful statement about the
objective value of the last iterate f7 € R? of gradient descent to any reference point z € R?. This inequality
will be a key for understanding how early stopping in gradient descent can act as a form or regularization, a
theme we will explore in later sections.

Assumption Asl (Gradient descent setting). The function f:R? — R is conver, differentiable, and
L-smooth for some L > 0.

Theorem 1 (Basic inequality for gradient descent). Under Assumption Asl, consider gradient descent with
iterates (1) and step sizes n; € (0,1/L). Then, for any reference point z € R and any stopping time T € N,

it holds that 1

< -
— T-1
2215:0 Tt

In particular, for a constant step size n; = n, this simplifies to

1(0r) = £(2) (160 — 2113 — 167 =13)-

1

f(aT)*f(Z)S%iT

(1160 — 213 = ll6r — 2113)-

Proof of Theorem 1. The proof proceeds in three steps.
Step 1: Bounding the proximity difference at ¢ and ¢ + 1. We measure proximity via the Euclidean distance.
For any z € R,

160 — 2113 = 1Be1 — 213 = 116 — 2113 — 16 — 1V f(8e) — 2[13 = 20{V £ (8), 6 — 2) — 0 [V (8)]15.
Step 2: Bounding the criterion difference f(0;) — f(z). By convexity of f, f(6;) — f(2) < (Vf(6:),60; — z).

Substituting this into result from Step 1,

200((0r) = £(2)) = 2 IV f(O)II3 < 1162 — 2[5 — 101 — 213

The L-smoothness of f and 7, € (0,1/L] guarantee, via the descent lemma (Lemma Al), that

F(Ousn) < F60) — (1 = Sm) IVF6OIE < £60) - Sml V7@

This ensures f(67) < f(6:) — 3m|[Vf(6:)||3 for any ¢ > 0. Using this to lower bound f(6;) — f(2) by
£(6r) = 1(2), 2 2

20 (f(07) — f(2)) < 110 — 2]l2 — [[0e41 — 2]l2.
Step 3: Aggregating bounds over iterations. Summing the result of Step 2 over ¢t < T gives a telescoping sum:

T-1

23" (f0r) — £(2)) < 60— =[3 — 16 — 2[3.

which concludes the proof. O

2.2 Basic inequality for early-stopped mirror descent

Mirror descent (Nemirovskij and Yudin, 1983; Beck and Teboulle, 2003) extends gradient descent to non-
Euclidean geometries, using a Bregman divergence to measure proximity. This generalization is crucial for
problems with specific domain and geometric constraints, for instances, the probability simplex and the
distance between two probability measures. We develop a basic inequality for mirror descent that shares a
structural resemblance with the one from gradient descent, as can be anticipated from their relationship.



Assumption As2 (Mirror descent setting). Let K and Q be closed conver sets in R? such that K C 2, and
their interiors are not empty. A function f : Q — R is convex on K, and it is differentiable on int(Q2). A
function ¢ : Q — R? is of Legendre type, and it is continuous on €.

The Bregman divergence induced by ¢, for u,v € Q, is

Dy(u,v) := ¢(u) = ¢(v) = (Vo(v),u — v).

This is only well-defined if and only if v € int(£2) since ¢ is of Legendre type (Lemma A2). Given initialization
0o € K Nint(2) and the step sizes ()52, mirror descent generates iterates as

Or1 = argger)xclin {m(Vf(6:),0) + Dy(0,0:)} . (2)

This update guarantees that 6, € K Nint(£2) for any ¢t > 0 (Lemma A4), keeping Dy(-, ;) well-defined.

Assumption As3 (Additional mirror descent setting). The function ¢ is a-strongly convex for o > 0 with
respect to a norm || - || on K. The function f is L-smooth with respect to || - || for L >0 on K Nint($).

Theorem 2 (Basic inequality for mirror descent). Under Assumptions As2 and As3, consider mirror descent
with iterates (2) and step sizes n; € (0,/L]. Then, for any reference point z € K and stopping time T € N,

it holds that L

£0r) = 1) < = (Dol 00) = Do)
t=0 "It

In particular, for a constant step size ny =1, this simplifies to

£(0r) = £(2) < = (Daz10) = Doz, 01)).

Proof of Theorem 2. The proof parallels that of the gradient descent case, but leverages properties of the
Bregman divergence.

Step 1: Bounding the proximity difference at ¢t and ¢ + 1. We measure proximity via the Bregman divergence.
The well-known “three-point identity” for Bregman divergence (see Lemma A5) states that

(V[ (0r), 0141 — 2) < Dg(2,0;) — Dy (2,0141) — Dy (0e41,64).-
Step 2: Bounding the criterion difference f(6;) — f(z). Convexity of f on K implies that
f(0r) = f(2) <(Vf(6:),00 — 2) = (V(0r), 00 — Ory1) + (Vf(0r), 011 — 2).
Multiplying both sides by 7; and using Step 1,

ur (f(9t) - f(z)) <V (0:),0: — Or1) + Dy (2,0:) — Dy(2,0111) — Do (0141, 01).

a-strong convexity of ¢ implies that Dy (641,6;) > (o/2)||0:+1 — 0¢]|* (Lemma A3), and L-smoothness of f

vields f(0i11) < f(0¢) + (V. f(04), Or1 = 0p) + (L/2)|041 — 0¢]|>. Thus, we can upper bound n(f(0¢11) — f(2))
as the following:

L — «
2

m(f(Oi1) = F(2)) < Do(2,00) = Do(z,0001) + ( 011 = 0 < Do(2,00) = Dy(2,0141),

where 1; < «/L is used in the last inequality. The descent lemma for mirror descent (Lemma A7) shows
f(6;) is non-increasing, we have

m(£(0r) = () < Do(2,00) = Do(2,6141).

Step 3: Aggregating bounds over iterations. Summing the result of Step 2 over ¢t < T gives a telescoping sum:

T-1

>, me(£00) = () < Do(z,00) = Ds(z, 1),

which concludes the proof. O



Theorem 2 indeed implies Theorem 1, its gradient descent counterpart, as a special case. Specifically, by
1

selecting ¢(v) = 3|v||3, for which the Bregman divergence Dy (u,v) = |lu — v||3 and the strong convexity
parameter a = 1, the mirror descent iterates and basic inequality precisely reduce to those of gradient descent.

Despite this direct relationship, presenting the two theorems separately, as we have done, highlights
distinct operational mechanics. The derivation for gradient descent directly leverages the natural pairing of
its updates with the inner product and Euclidean norm: (Vf(6;),0;+1 — 0:) = n:||Vf(6;)|3. In contrast, the
analysis of mirror descent with an arbitrary norm requires more nuanced arguments to navigate the interplay
between the chosen geometry and the update rule of mirror descent. Comparing gradient and mirror decent
pathways provides a richer picture of the two algorithms.

The basic inequalities for gradient descent and mirror descent in Theorem 1 and 2 are cornerstones of this

paper, which lead us to the connection between implicit and explicit regularization in the remaining sections.

3 Application: Training dynamics

The basic inequalities can provide insights into the algorithm’s training dynamics. In this section, we will
observe the evolution of the training loss and the distance between iterates and the solution set, and the limit
points of the iterates. Corollary 1 and 2, whose part (b)-(e) are motivated by Corollary 2.2 in Lemaire (1996),
reveal the connection to explicit regularization and clarify convergence towards specific solution under certain
conditions. As before, gradient descent results are the special cases of those in mirror descent, but comparing
their proofs highlights the underlying geometries of the algorithms. The proofs are provided in-text, while
part (d)-(e) have more details in Appendix B.

Corollary 1 (Gradient descent). Under Assumption Asl, consider the gradient descent updates in (1) with
step sizes m € (0,1/L].

(a) (Training loss bound with explicit ridge regularization.) For any and T € N,

1/4 _ 1
f(9T)+W||90—9T||§ < min f(Z)‘i‘ﬁHeO—ZH%
t=0 "t z€R t=0 "t

(b) (Asymptotic training loss.) Define inf f := infycgra f(0), which may be negatively infinite. If >, n =
o0, then
Jim £(6,) = inf f.
(c) (Non-increasing distance to solution set.) Define the solution set S := {0* € R%: f(0*) = infycpa f(0)},

which is closed and convez, but possibly empty. Let Distg(u) := mingeg ||[u — s||2 denotes the distance
fromu to S. If S # (), then

Vs € S, {||0: — sll2}i2; is non-increasing, and thus, {Distg(0:)}72, is non-increasing.
(d) (Limit of updates.) If S # 0 and >~ m = 0o, then
t—o0
Moreover, defining Projg(u) := argmin, g ||u — s||2 as the projection of u onto S, we have

0o — Projg(fo)|l2 < Dists(6g) and thus [|0sc — 6o|2 < 2Distg(6p).

(e) (Minimum-norm solution.) If S is a non-empty affine subspace and >, n; = 0o, then

O = PrOjS(90>‘



Proof of Corollary 1. (a). By Young’s inequality, 2ab < ca? + b?/c for any ¢ > 0, we get
160 — 2[13 — 167 — 2[13 =2(6o — 2,00 — b7) — [|60 — 673
<2(|6 — z[|2[160 — O7ll2 — |60 — Oz I3
<2010 — 213 ~ 367 — Boll3
Using this to upper bound the basic inequality from Theorem 1, we obtain that

1
< -
= T—1
2 -0 Mt

for any z € R%, completing the proof.

1 1
1(0r) = £(2) ——=— (2010 — 213 - 51107 — 0ll3)

(160 = 2113 = llor - 2113) <
2 Zt:o Tt

(b). Theorem 1 implies that for any z € RY, f(07) < f(2) + ||60 — 2|13/(2 EZ:OI ne). Given that > .o m = oo,

taking the limit superior yields lim supp_, oo f(07) < f(z). Since this holds for any z, we get lim sup,_, . f(01) <
inf f. Combined with the trivial inequality inf f < f(67), we conclude that limr_, o, f(07) = inf f.

(c). We can write S = f~1({inf f}). Assume S is non-empty, which implies inf f is finite. Since f is convex
and continuous, S is a closed convex set. Consequently, the distance function Distg(u) is well-defined. By

Theorem 1, we know that

T-1

167 — 513 < 160 — sll3 +2 D ne(f(s) — £(6r))

=0
for any s € S and T € N. Since s € S, we have f(s) = inf f < f(fr), making the summation term
non-positive. Thus, ||#7 — s||2 < ||#o — s||3. This argument applies more generally: starting the gradient
descent process at iterate 6, and running for w — 7 steps (where w > 7) yields ||6,, — s||3 < [|0; — s||3. As
this holds for any s € S, taking the infimum over s on both sides gives Distg(f,,) < Distg(6,). The sequence
{Distg(6:)}2, is therefore non-increasing.

(d). (Proof sketch.) Choose any s € S. Due to the decreasing nature of ||0; — s||3 from part (c), there is a limit
point 0, as of a subsequence {6;,}22,. Then 6, € S due to part (b). Thus, [|; — 0|3 is also decreasing,
which concludes 0; — 0, as t — oo.

(e). (Proof sketch.) Let P := Projg(6p) and v = P—0,. For any ¢ > 0, define 3. := P+c-Distg(6)-(v/|v||2) €
S. Since f. € S, due to part (c) and (d), we must have ||0oc — Bell2 < ||fo — Be|l2. Based on the collinear
structure of three points 6, P, and (., observe that

|v]|2 + ¢ - Dists(6) < v/1+ 2 - Dists (6p).
As ¢ — 00, the term /1 + ¢2 — ¢ — 0. Therefore, we have |[v]|s < 0, implying v = 0, and thus, P = f,,. [

Before we present the results for mirror descent, let’s look into Corollary 1 more deeply. Part (a) shows the
resemblance of the structure of explicit regularization, yet their parallel is not exact. An explicitly regularized
estimator, #, is a minimizer of a composite objective f(8) + A||fp — 8|3 for A > 0. By its definition,

F0) + 6o —0lI5 < min [£(2) + Ao — 2]13] -

However, the bound from part (a) has a slightly different form, since the effective coefficients for the penalty
term on the left- and right-hand sides have a fixed 1:4 ratio. Despite these distinctions, part (a) compellingly
demonstrates an algorithm-inherent regularization effect.

Part (b)-(d) describe behaviors of f(67) and ||6y — 07]||2 separately, while part (a) jointly treated them.
Part (b) establishes the consistency of the algorithm. Part (¢) addresses the stability of the iterates with
respect to the solution set S. Part (d) provides a bound of the limit points of the iterates, which is not
arbitrarily far from the projection of the initial point to S.

Part (e) characterizes the limit point of the iterates for an affine solution set. This finding resonates
and generalizes a widely-known phenomenon in the overparametrized linear regression: gradient descent



initialized at 0 € R? converges to the min-norm solution. Part (e) demonstrates that such specific convergence
behavior is not unique to linear regression but a consequence of a broader principle captured by the corollary.
In particular, the implication of part (e) covers the generalized linear models (GLMs). While its formal
definition is deferred to Section 4, where our focus shifts from the optimization to the statistical property of
the estimator, the application of part (e) to GLMs is presented in Corollary 4.

As hinted earlier several times, mirror descent algorithm exhibits analogous properties as gradient descent,
through the same lens of the basic inequality. The proofs are in-text, while part (d)-(e) have more details in
Appendix B. Note that Gunasekar et al. (2018) discussed a similar result as part (e), with a specific form of
f(0) = > e f({zi,0),y:), which enables the gradient descent update always lies on the row space of z’s.

Corollary 2 (Mirror descent). Under Assumption As2 and As3, consider a mirror descent update in (2)
with step sizes n; € (0, /L.

(a) (Training loss bound with explicit norm-reqularization.) If (i) ¢ is G-smooth with respect to | - || in K,
or (i) Dy(z,00) < § |60 — 2| for any z € K, then for any given T € N,

ald . G+a)/2
f0r) + TiilH@o —0r|* < min | f(2) + %”90 -z
t=0 "t ek t=0 "It

(b) (Asymptotic training loss.) Define inf f := infgexc f(0), which may be negatively infinite. If > ,° e = 00,
then
lim f(6;) = inf f.
t—o0

(¢) (Non-increasing Bregman distance to solution set.) Define the solution set S := {6* € K : f(6*) =
infoexc f(0)} C IC, which is closed and convez, but possibly empty. Then BregDistg(u) := mingeg Dg(s, u),
which denotes the Bregman distance from u to S, is well-defined for any v € K Nint(Q). If S # 0, then

Vs € S, {Dg(s,0:)}i2, is non-increasing, and thus, {BregDistg(8,)}i2, is non-increasing.

(d) (Limit of updates.) Suppose S # (O and >~ n; = co. Further assume either one of the following:

(i) SNint(Q) # 0;
(ii) for any y € Q and for any sequence {y, }52; C int(2) converging to y, Dy(y,yn) — 0.1

Then
(1) tli>rrolo 0; = 0o € SNint(Q); (44) tli)rgo 0; =0, € S.

(e) (Minimum-Bregman-divergence solution.) If S is a non-empty affine subspace, S C K Nint(Q2), and
Yoo = 00, then
0 = BregProj¢(6p).

Proof. (a). Note that each of two assumptions for ¢ in the theorem statement gives that Dy(z,600) =
¢(2) — ¢(0o) — (Vo(0), 2 — Oo) < ||z — bp||%. The a-strong convexity of ¢ (via Lemma A3) implies
Dy(z,07) > S|z — 07|*. By the triangle inequality, easily observe that ||y — 7[> < 2|60 — 2||* +2||z — 6|
Rearranging this gives us ||z — 67|? > 1|6 — 67||> — ||z — 6o |?. Substituting this into the lower bound for
Dy(z,07), we have Dy(z,0r) > 2(5160 — 07]1* — ||z — 60]|?) = 2|60 — 6 ||> — £]|z — 6o||*. Finally, combining

the upper bound for Dy(z,6y) and the lower bound for Dy(z,07):

G @ @ G+a @
Di(ert0) = D) < (Gl = 0l ) = (5160 = 021 = 1 = 0l = S5z = 0l = § 6o — b

2

Then the basic inequality in Theorem 2 completes the proof.

IThis is not generally true for any Legendre type ¢, see e.g., Remark 3.4 and Example 7.32 in Bauschke et al. (1997).



(b). From Theorem 2, for any z € IC, we know that f(07) < f(2) + Dy(2,60)/ ZtT;OI ne. Since Y7 = 00,
taking the limit superior gives limsup,_, . f(07) < f(z). This yields limsup;_, . f(67) < inf f. Since
inf f < f(Or) trivially holds, we conclude limr_,, f(f7) = inf f.

(c). We can write S = KN f~1({inf f}). Assume S is non-empty. As both K and f~!({inf f}) are closed and
convex, S is also closed and convex.

First we show that BregDistg(u) is well-defined for any u € K Nint(£2). Choose any z € S C K and define
aset S:=SN{yeR: ||y —u| <+/(2/a)Dg(z,u)}, which is bounded in | - || and closed. Since all norms
on finite-dimensional real vector space are equivalent, S is also bounded with respect to I - ||2, hence compact.
Note that Dy(-,u) is continuous on int(f2) since ¢ is continuous on int(2). Therefore, Dy (-, u) attains its
minimum on the compact set S. Moreover, as Dg(s,u) > 2||s — u||? for s € K by Lemma A3, we know that
z € S and the minimizer of Dy (-, u) over S is the minimizer over S. Thus, BregDist g(u) is well-defined.

Now we prove that Dy(-, 6;) is non-increasing. The basic inequality in Theorem 2 says that for any s € S:

T-1

>, M (07) = £(5)) < Dy(s,00) = Dy(s., 0).

By the definition of S, clearly f(s) = inf f < f(0r), so the left-hand side is non-negative. This implies
Dy (s,07) < Dg(s,00). Applying this argument iteratively from time 7 to w > 7, we find Dy(s, 8,,) < Dy(s,6,).
Taking the infimum over s € S yields that the sequence {BregDistg(6;)}52, is non-increasing.

(d). (Proof sketch.) Fix s € S. From part (c), {0:}$2, has a convergent subsequence {6, }32; with limit
Ooo := lim; . 0;, € K. By part (b), 0 € S. Each of two assumptions given in the theorem statement
implies Dy(0,0;,) — 0 as ¢ — oo. Using this we can prove a contradiction if the entire sequence {0;}52
does not converge to 6.

(e). (Proof sketch.) Define P := BregProjg(6p) € S. Let v := P — 0 # 0, then P + cv € S for any ¢ € R
since S is affine. Since S is affine, the generalized Pythagorean theorem for Bregman projection holds with
equality: Dy(P + cv,0y) = Dy(P + cv, P) + Dy(P,6p). Using two other inequalities regarding Dy, we can
prove that (V@(P) — Vo(0uo), cv) < Dy(P,60p) — Dy(P,0s) for any ¢ € R. Since Dy (P, 0) < Dy(P,6y) by
part (c¢) and (d), we conclude V¢(P) = V(0 ), which implies 0o, = P. O

3.1 Notable example: exponentiated gradient descent algorithm

A prominent instance of mirror descent beyond Euclidean geometry is the exponentiated gradient descent
algorithm (Helmbold et al., 1995; Kivinen and Warmuth, 1997). Exponentiated gradient descent is particularly
suited for optimization problems constrained to the probability simplex Ay := {a € R¢ : a; > 0, Zle a; =1},
serving a general role in various areas such as portfolio selection (Helmbold et al., 1998; De Rooij et al.,
2014), solving max-margin or log-linear problem (Bartlett et al., 2004; Collins et al., 2008), and aggregation
of models or estimators (Juditsky et al., 2005, 2008).

Exponentiated gradient descent shows that mirror descent efficiently and naturally updates under a
specific constraint set and geometry. To view this algorithm as mirror descent, one chooses K = ) = A, and
the negative entropy function ¢(a) = Z?:I a;loga;. Note that ¢ is of Legendre type on Ay, and 1-strongly
convex on Ay with respect to || - ||1, due to Pinsker’s inequality. The Bregman divergence induced by ¢ has
a special form and name: Kullback—Leibler (KL) divergence, Dky,(a,b) = Z‘::l a;log(a;/b;). Then, mirror
descent update (2) yields the exponentiated gradient descent update: given 6; € int(A,),

1 -

B (3)

ét+1 =0, exp(*ntvf(et)), 011 = — t
1044111

The first half of the Corollary 3 is derived by part (a) of Corollary 2. The other half is due to specific structure
of KL divergence. The proof is provided in Appendix B.

Corollary 3 (Training loss bound for the last iterate of EGD). Under Assumption As2 and As3, consider
EGD with iterates in (3) with an initialization of 6y = (1/d,...,1/d)" € R% and step sizes n; € (0,1/L].
Then for any T € N and z € Ay:

1/4 1 C|d+1 1 logd
f(QT)+%||90—9T||f < f(2) + g7 min 160 — 212, =110 — 217 + —=Z 160 — 211 )|
t=0 "t t=0 "It 2 2 2



3.2 Notable example: generalized linear model (GLM)

As briefly explained after Corollary 1, we can directly apply Corollary 1 and 2, particularly their part (e)
regarding the limit point of iterates, to the generalized linear models (GLM). The GLM, which will be formally
defined in Section 4, is a broad class of model that includes linear regression as a special case. Corollary 4
now details the application on GLM, specifically considering optimization within a general affine set I C R<.

Corollary 4 (Limit of gradient descent and mirror descent on GLM). Consider the GLM loss function £(6)
specified in Definition 1, with a relaxed condition: the optimization domain is not necessarily R%, but an
affine subset I C R, Write the solution set S := {s € K : £(s) = infgpex £(0)}. Suppose that Assumption As2
and As3 holds with Q@ = K and f = £, with appropriate ¢ and . Further assume S # ) and S C int(K).
Consider the mirror descent update generated by (2) initialized at 6y € int(KC) with step sizes ny € (0, /L.
Then, lim;_, o 0; — BregProjg(0o).

Proof. Lemma B1 proves that S = K N ({s} + {v € R?: Xv = 0}): a rough intuition for this observation is
that the GLM loss function depends on 6 only through X6. Since S is an intersection of two affine sets, it is
also an affine set. Therefore, the part (e) of Corollary 2 (and its gradient descent counterpart in Corollary 1)
directly applies, concluding the proof. O

4 Application: GLMs with gradient descent

Having observed the application of basic inequalities for analyzing training dynamics in Section 3, we now
shift gears to their statistical perspective: the prediction risk of the estimators. This section will focuses on
generalized linear models (GLMs) and compared two regularization methods: an explicit regularization via
ridge penalties; and an implicit regularization by early-stopped gradient descent. Meanwhile, an analogous
analysis for mirror descent will be presented in the subsequent Section 5.

GLMs refer to a broader model class related to the exponential family, whose formal definition can be
found in Appendix C. The loss function for our analysis is defined below, as a special case of GLMs with an
identity sufficient statistic. This is general enough to include linear, logistic, and Poisson regression, which
are related to Gaussian, Bernoulli, and Poisson distribution, respectively.

Definition 1 (GLM loss and estimator; special case of (19)). Let (X,Y) € R"*4 x R". The GLM loss
function and estimator, with an identity sufficient statistics, are defined as

. 1
fy := argmin £(8) where €(6) == — ( YT X0+ A(Xe)). (4)

OERd n
Note that A : R™ — R acts component-wisely as A(v) = > 1 ; A(v;), where A : R — R is the cumulant
function for the corresponding univariate exponential family. Note that, for Gaussian, Bernoulli, and Poisson

distribution, A(E) = €2/2, A(€) =log(1 + €%), and A(E) = €5, respectively.

Now we introduce the prediction risk, under the fixed-design setting. Where training data is (X,Y), we
evaluate the prediction risk of an estimator § = (X,Y") on a fresh response vector W, an independent copy
of Y given fixed X. The formal data generating process and the prediction risk definition are as follows.

Assumption As4 (Data Generating Process). The features X = (x1,...,1,)" € R"*4 is fived. The responses
Y = (y1,...,yn) " €R™ consist of mutually independent samples y; ~ P;. The distribution P; may depend on
x;. Importantly, P; is not required to be a member of the exponential family that defines the GLM estimator
(allowing for model misspecification). Let u; := Ely;] under P; be the true conditional mean of y;. Let
pi= (1, .., fn) " € R™ be the vector of true means, and € :=Y — u be the zero-mean noise vector.

Definition 2 (Prediction risk). Under Assumption As4, let 0 = 0(X,Y) be an estimator derived from
training data (X,Y). Let W = (wy,...,w,) T be a vector of fresh, independent test responses, where w; ~ P;
18 identically distributed to y;, and W is independent of Y. The prediction risk of an estimator 0 is the
expected GLM loss on test data, conditional on training data (X,Y) is defined as

Risk(6) = %EW [~ WT X0+ AX6) | X, Y] = %( 1T X0+ A(XD)). (5)
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4.1 Risk analysis: Ridge-penalized GLM estimator

We begin our risk analysis with the widely-used explicit regularization, the ridge penalty, in order to later
compare with gradient descent. The ridge-penalized GLM estimator is defined by augmenting the GLM loss
(4) with an additional || - ||3-penalty on the coefficients. For a user-chosen regularization parameter A > 0,
the ridge estimator 0 is the minimizer of

0x(0) == €(0) + N|0]|2, ie., 0Oy :=argminly(0). (6)
0cRd

Note that £o(0) = ¢(0), making 6y defined in (4) be consistent to the definition in (6) with A = 0. The
cumulant function A used in a GLM is convex, which implies £(6) is also convex. Consequently, £(6) is
2)\-strongly convex for A > 0, whose standard proof using properties of A can be found in Appendix D.

Our first result, Proposition 1, provides a general bound on the prediction risk of the ridge-penalized
GLM estimator 6, against the one for an arbitrary parameter 6.

Proposition 1 (Risk bound for ridge-penalized GLM estimator). For any A > 0 and any reference parameter
0 € RY, the prediction risk of 0y is bounded by:

2

XTe
) —|—2)\||0||§.

o , 1
Risk(6y) SRISk(G)-ﬁ-ﬁH -

The above proposition decomposes the excess risk Risk(é)\) — Risk(#) into two parts, a ‘variance’ term
L|XTe/n||3 and a ‘regularization’ term [|¢[|3, which can be balanced by choosing A. To make this bound
more statistically sound, we assume sub-Gaussian noise and obtain the high-probability bound.

Proposition 2 (Oracle risk bound for ridge-penalized GLM estimatoi). Assume each €; in Assumption Asj
is sub-Gaussian with parameter o?. Let 0? := max; 07. Recall that ¥ = ~XTX. Then, for any § > 0 and
b > 0, choosing

o = = =
)\:m\/tr(x)+2H2HF\/5+2HEHOP6 (7)
yields the following bound with probability at least 1 —e™%:
- . . 2bo = = =
Risk(0y) — N nghfngRlsk(Q) < ﬁ\/tr(E) + 2||E||F\/g+ QHZHOP& (8)

The above bound depends on the spectrum of the empirical covariance matrix . Regarding the spectral
properties of X, consider a following common scenario which holds, for instance, for random designs of features
where entries of X are independent sub-Gaussian (see Vershynin (2018) for concentration results):

tr(i) = O(d), HiHF =O0(Vd), and HiHop =0(1), with respect to d. (9)

Then, letting & = logn in (8) yields an excess risk bound of O(bo\/d/n) with probability at least 1 — 1/n.

We now state our main result for the ridge-penalized GLM estimator. Theorem 4 tailors an oracle
inequality from Proposition 2 to specific GLMs by identifying their respective sub-Gaussian noise parameter.
The proof, presented in Appendix D, adapts the one for Proposition 2 but requires particular observation for
the Poisson regression, which leads to a slightly less probability guarantee than the Gaussian and Bernoulli
distributions.

Theorem 3 (Specific cases of ridge-penalized GLM estimator). Under Assumption As4, consider the ridge-
penalized GLM with the parameter X, i.e., with the loss function of £y in (6), where £ uses (i) Gaussian
distribution (linear regression), (ii) Bernoulli distribution (logistic regression), or (iii) Poisson distribution
(Poisson regression). Further assume, respectively, one of the following for P; in Assumption Asj:

(1) Gaussian distribution where P; = N (u;,0;), for all i € [n];
(#) Bernoulli distribution where P; = Bernoulli(y;), for all i € [n];

(i4i) Poission distribution where P; = Pois(u;), for all i € [n], and n > 3.

11



Define opist as the following, respectively:

(i) For Gaussian P;, opist = Maxi<i<n 0i;

(i) For Bernoulli P;, opist = 1/2 ;
(i1i) For Poisson P;, opisy = (2||it]lco +2/3)logn + ||it|lec/2, where ||p]|co := maxi<i<n fi-
Finally, for any § >0 and b > 0, if we choose

ODis S «
A= o fa(S) + 25 Vo + 2,0

then with the probability at least 1 — e~? for (i)-(ii), or 1 — 1/n —e™% for (iii),

Risk(é,\)—ezuigrll‘fﬁlesk 72bJD‘St\/t %) +2|| 2] Ve +2[|E|,,0

Theorem 3 establishes a unified prediction risk bound applicable for widely used GLMs. The derived
high-probability upper bound of ON(bU\/d/ n), contingent upon the spectral properties of ¥ in (9), provides a
general benchmark for estimator performance.

A notable strength of this theorem lies in its robustness to model misspecification. For example, instead
of Gaussian distribution N (u;, 02), any sub-Gaussian distributions with parameter o7 is valid for case (i).
Also, instead of Bernoulli(y;), any bounded y; € [0, 1] is still valid for case (ii). This aspect underscores broad
applicability of the theorem, and more fundamentally, the basic inequality.

Comparison with existing literature. While this unified bounds offers a useful general perspective, its
comparison with the literature reveals nuances for each GLM.

Considering ordinary linear regression (i.e., A = 0; no penalty), we know the closed form solution
is 0 = (XTX)"'XTY, when it is well-defined. Starting from this closed form solution, we can derive
tighter analysis: in a well-specified case of E[Y] = X6, we can prove that Risk(f) — Risk(y) = || Hell3
where H = X(XTX)'XT is the projection matrix. Moreover, when ¢; ~ sG(c?), we can prove that
Risk(0) — Risk(6p) has a high-probability upper bound of O(c62d/n). Compared to our bound of O(bo+/d/n),
this upper bound does not depend on b when b > ||fy||2 but instead ¢ has a squared term, and more
importantly, the magnitude of d/n factor is not a square root. Also, this does not cover general b < ||6o||2.
Related calculations are provided in Appendix D.

Regarding the ridge regression (i.e., A > 0), the literature has considered a couple notion of prediction
risks, which also yields O(y/d/n) bound. Ali et al. (2019) defined in-sample and out-of-sample prediction risk
for ridge regression, similar but not identical to our definition of the risk. For brevity, here we discuss their
out-of-sample risk bound only They derlved the exact upper bound instead of a high-probability bound,
whose form is simplified to + GV 1Boll3 + = - /\ —2°d__ when 3 = ¥ = I. The bound achieves the minimum value
of O(||ol|lor/d/n) with the best choice of S\ Meanwhile, A = 0 covers the ordinary linear regression case,
with the bound O(o%d/n). Yet this observation does not apply to general b < ||Bo]|2-

Moreover, regarding out-of-sample prediction risk for ordinary linear regression and ridge regression,
their asymptotic value, in almost surely limit, has been studied leveraging the closed form solutions and
Marchenko-Pastur theorem in random matrix theory (Hastie et al. (2022); Dobriban and Wager (2018); nicely
summarized in Tibshirani (2023)).

In the context of Ly-regularized logistic regression, the O(b\/d/ n) rate provides a better or comparable
rate to known results. Bach (2010) leverages the self-concordance property of the logistic loss, to bound
prediction risks for misspecified and well-specified models. The misspecified case offers high-probability bound
of O(b?d//n) if Gaussian x;’s are further assumed. The well-specified model result is not universal in the
sense that it needs many conditions to be satisfied related to the data. Yet with the strongest heuristic
assumption that all matrices appearing are isometric, the high-probability upper bound that we can deduce
is O(bd/+/n) with the best choice of A = O(d/+v/n).

In summary, while Theorem 3 offers a valuable unified perspective on prediction risk for a range of GLMs,
it may not achieve the optimal rate for every specific model instance when benchmarked against highly
specialized analyses, but still provides interesting and useful new results.

12



4.2 Risk analysis: Early-stopped gradient descent GLM estimator

Changing the point of view from the explicit regularization to implicit regularization, now we focus on GLM
estimators obtained by early stopping of gradlent descent with the original, non-penalized GLM loss ¢(6)
in (4). We initialize with 6y = 0. Let 0} (&4 denote the iterate after T steps of either, (i) standard gradient
descent on R?, or (ii) projected gradlent descent on B4 (b) with some b > 0. Mirroring the role of A in ridge
regression, we define an effective regularization parameter for early stopping with constant step size 7:
1
Ap = 0T (10)
This definition of A is motivated by our basic inequality for gradient descent in Theorem 1. If variable step
sizes 1, are used, then A\p = 1/ Zt o0 M-
Before we introduce our main result, we introduce another variant of gradient descent, projected gradient
descent, over a closed convex set /C with an initialization 6y € R and step size 1;, whose iterates follow

Ori1 =0, — iV f(0), Op1 = arg I}Clin 1641 — 0]]3. (11)
€

It is known that the projected gradient descent is a special case of mirror descent iterates in (2) with
¢ = %H - ||3, which is also a special case of an equivalent two-step update form of mirror descent.? Thus
Theorem 2 holds for the projected gradient descent as well: f(01)— f(z) < 2nT (lz = 00l|3 — ||z — O7||3), which
has the same form as Theorem 1 but only for z € K.

Therefore, we will consider both gradient and projected gradient descent together in this section. The
risk bound for early-stopped (projected) gradient descent in Proposition 3 closely resembles that for ridge
regression, a testament to the connection of these two regularization methods.

Proposition 3 (Risk bound for early-stopped (projected) gradient descent GLM estimator). Assume the
GLM loss 5(9) is L-smooth in either (i) R? or (ii) By(b) for some b > 0. For each assumption, respectively,
consider H(g obtained by T iterations of

(i) gradient descent as (1) or  (ii) projected gradient descent over Bg(b) for b >0 as (11), (12)

with initalization 8p = 0 and constant step size n € (0,1/L]. Then, for any stopping time T € N and any
reference point (i) 6 € R or (ii) 0 € By(b), respectively:

2

.
Risk(6%Y) < Risk(6) + — HX ‘

AT a2
o o). (13)

n 2

Note that the similar results holds for arbitrary stepsizes n; € (0,1/L], as the proof in Appendix E explains.
The resemblance of the above proposition with Proposition 1 is remarkable, which is originated from the
connection between gradient descent and ridge penalty in the basic inequality in Theorem 1. As Proposition
1 led to 2 in the ridge-GLM case, we have an analogous oracle inequality for early-stopped gradient descent
estimator for GLM.

Proposition 4 (Oracle risk bound with sub-Gaussian noise for early-stopped GLM estimator). Assume that
€; in Assumption As4 is sub-Gaussian with parameter 02»2. Write 0 := max(o1,...,0,). Further assume that
the loss function { is either L-smooth in either (i) RY or (ii) By(b) for some b > 0 Consider 9( Y obtained

by T iterations of (12), with initalization 6y = 0 and constant step size n € (0,1/L]. For any 6 > 0, define

= bf\/tr ) +2]| 8[| V6 + 2|88

Suppose the following stopped-time T is an integer:

1

T —
77)‘;1

2Step 1: 0, = (Vo) [V(0:) — ne V£ (0t)]. Step 2: 011 = argminge e Dg(x, 07 ).
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Then, the following holds with probability at least 1 — e~°

Risk(0ff") = | inf _ Risk(9) < T /on() + 2[5 V5 + 2],

In general, for

1
= [TW’ ie. T =argmin{\; <A},
NAgd teN

the same bound holds as above with an additional discretization error term on the right-hand side of

(o%n/(2n) - (6x(5) + 2|8 V5 + 2] ]| ,9)

Using the above proposition, we have the main theorem for the early-stopped GLM estimator, similar to
Theorem 3 for the ridge-penalized estimator. The proof can be found in Appendix E.3.

Theorem 4 (Specific cases of early-stopped GLM estimator). Under Assumption Asj, consider the GLM
with the loss function £ in (4), using (i) Gaussian, (ii) Bernoulli, or (iii) Poisson distributions, as in Theorem
3. For each (i)-(iii), respectively, further assume that the distribution P; and opist are those in Theorem 3.
Then, for each distribution, € is Lpist-smooth in certain domains:

(i) For Gaussian P;’s,  is Hi”op—smooth in RY;
(i) For Bernoulli P;’s, { is %HiHop—smooth in RY;
(#ii) For Poisson P;’s, { is ||§]||Op exp(b - maxy<;<p ||zi]|2)-smooth in By(b) for any b > 0.
Moreover, consider following optimization algorithm with step size n € (0,1/Lpist]:
(i)-(ii) Gradient descent with iterates of (1);
(#ii) Projected gradient descent on By(b) with iterates of (11).

Define Ayy for (i)-(iii) respectively as

= \/t )+ 2] Vo + 2,0

Suppose the following stopped-time T is an integer:

1
77)‘;(1

Then, for any 6 >0 and b> 0, the following holds with the probability at least 1 — e~ for (i)-(ii), or
1—1/n—e™% for (iii),

. . . bo is = = =~
Rlsk(eg,?d)) o HIOIhESbRISk(e) < %\/tr(x) + ZHEHF\/S—F QHEHOPCS

In general, for T = ( 5 |s dee, T = argmingen{Ae < Ajq}, the same bound holds as above with an additional
discretization error terrﬁ on the right-hand side, same as Proposition 4.

Theorem 4 shows that early-stopped (projected) gradient descent achieves essentially the same oracle risk
bound as optimally tuned ridge regression, stated in Theorem 3, up to the small discretization error.

Comparison with existing literature. A tighter analysis has been done in linear regression. Ali et al.
(2019) compares ridge regression and gradient flow, a continuous-time version of gradient flow, leveraging
their closed-form solutions. They establish that the out-of-sample prediction risk bound of gradient flow at
time ¢ is within a factor of 1.7 of the risk from the ridge solution with A = 1/¢. Furthermore, the ratio of
their minimum Bayes risks is tightly bounded.
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In the context of overparametrized logistic regression, where data is more likely to be linearly separable,
Wu et al. (2025) derive high-probability upper bounds on the excess risk for early-stopped gradient descent.
They prove the existence of a stopping time that achieves rates of O(d/n) in the well-specified case and
O(y/d/n) in the misspecified case. Notably, their definition of excess risk does not reflect the size of interested
domain, b. They also suggests a connection between the gradient descent and ridge regularization, with
respect to the angle between their estimators.

While our results only cover small step sizes bounded by 1/L, Wu et al. (2024) study gradient descent
with large step size for logistic regression on linearly separable data. They identify three phases of training
with gradient descent which consequently leads to a monotonic decrease of of the loss.

5 Application: GLMs with exponentiated gradient descent

In this section, we explore early-stopped mirror descent with basic inequalities developed in Section 2.2,
and its corresponding explicit regularization, named Bregman-divergence-penalized regularization. As a
key application of our general theory, we focus on the exponentiated gradient descent for GLMs and
Kullback—Leibler (KL) divergence penalty. These results are connected to stacking or model aggregation,
which are discussed in detail later this section.

5.1 Risk analysis: KL-penalized GLM

Let’s recall related definitions and notations from previous sections: the training data (X,Y) is generated as
Assumption As4 and the prediction risk of an estimator follows Definition 2; the GLM loss function is of the
form ((0) = (=Y T X6 + A(X0)). Then, we define Bregman-divergence-penalized GLM loss function and
estimator as the following:

Or.. = argminly 4.(0) where €y ,.(0) :=£(0) + ADy(0, 2),
ockC

where \ > 0 is the regularization parameter, a set K C R is closed and convex, a function ¢ : K — R is
convex, z € K, and Dy(0, z) is a Bregman divergence defined in Section 2.2.

While general theoretical results and discussion for Bregman-divergence-penalized GLMs can be found in
Appendix F, our focus is an instance of this, named KL-penalized GLM estimator. Our interest is to find an
estimator lying in the d-dimensional simplex,

Ay = {GGRd:Gi >0, Z;ai - 1},

and thus we choose K = A4. One popular example of such setting is stacking or model aggregation, where
base predictors {h;}%_; are given, and we construct an aggregated predictor hy = Z:.izl 6;h; under certain
risk criterion (Wolpert, 1992; Breiman, 1996). The vector of weights 6 = (fy,--- ,0,) " is the parameter to be
learned from the data, and is typically constrained in Ay as it represents a convex combination of the base
predictors. The base predictors {hi}‘ij:1 are used as benchmarks for evaluating the aggregation method, and
will not be updated during the learning procedure.

In our setting, the task is to learn § € A, with a small prediction risk, subject to certain KL-divergence
budget constraint. Thus, we choose ¢ to be the negative entropy function ¢(0) = Zle 0;log0; for 0 € Ay,
so that Dy becomes the KL divergence Dx1,(a,b) = Zle a;log(a;/b;), as mentioned in Section 3.1. Also, we
measure the KL divergence with respect to the uniform distribution 7 = (1/d,...,1/d)T € A4. In conclusion,
we consider following KL-penalized GLM loss function and estimator:

0y := argmin £ (0) where 0x(0) := £(8) + ADx (0, ). (14)
ey

Then, Proposition 5, which is analogous to Proposition 1 in ridge GLM, holds as a special case of general
result for Bregman-divergence-penalized GLM (see Appendix F). Consequently, we can establish oracle
risk bound on the prediction risk of §y, under a sub-Gaussian noise assumption and fixed design similar to
Proposition 2. When we relax the assumption to maxi<j<q ||X.;||2 < Cqy/n where Cy is a constant only
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depends on d, the risk bound from the proposition is also just Cy folded and become O(cCqy+/(blogd)/n).
Then, finally, we can establish oracle risk bounds for specific GLMs based on Proposition 6, whose result and
proof is parallel to Theorem 3. The proofs can be found in Appenxis F.

Proposition 5 (Risk bound for KL-penalized GLM estimator). For the KL-penalized GLM estimator Oy, its
prediction risk is bounded by:

. XTe
Risk(fy) — Risk(9)

+ 2)\DKL (9 7T)

Proposition 6 (Oracle risk bound with sub-Gaussian noise for KL-penalized GLM estimator). Assume that
each €; in Assumption Asj is sub-Gaussian with parameter o?. Further assume that maxi<j<q||X.jll2 < v/n
where X.; denotes the j-th column of X. Write 0 := max(o1,...,0,). Then, for any 6 >0 and b > 0, by
choosing

1
e o og(2d) + (57
nb
the following holds with probability at least 1 —e™°
A b(log(2d) + ¢
Risk(Gy) —  inf  Risk(6) < 4o/ 082D +9)
9: DKL(G,‘IT)SI) n

Theorem 5 (Specific cases of KL-penalized GLM estimator). Under Assumption Asj and the setting of
Proposition 6, consider the KL-penalized GLM with the parameter A, i.e., with the loss function of £y in (14),
where ¢ uses (1) Gaussian, (i) Bernoulli, or (iii) Poisson distributions. Further assume, for each (i)-(iii),
the distribution P; and sub-Gaussian parameter opis; are as given in Theorem 8. Then, for any 6 > 0 and
b > 0, if we choose
log(2d) + &

nb ’

then with probability at least 1 — e™% for (i)-(ii), or 1 —1/n —e~% for (iii),

A = ODist

« log(2
Risk(By) — inf _ Risk(6) < o w.

5.2 Risk analysis: Early-stopped exponentiated gradient descent GLM estimator

Now we consider the explicit regularization counterpart of KL-penalized GLM, that is, early stopping
exponentiated gradient descent on the unpenalized GLM loss function ¢(#). As before, broader observation
for early-stopped mirror descent corresponding to Bregman-divergence-penalized GLM is possible, and can
be found in Appendix F.

Recall exponent1ated gradient descent iterates in (3) from Section 3.1. Just for clarity, we denote the

T-th iterate as 0 (6d) et the initialization is the uniform distribution, i.e., 8y = w € Ay, and define
1
Ar = —
T T

as the effective regularization parameter. Then, we can obtain general and oracle risk bounds for 6, egd)

similar to those of KL-penalized GLM, in Proposition 7 and 8. Remark that, in the bounds, Ay essentlally
plays the role of A in KL-penalized GLM. In conclusion, we obtain the risk bounds of 6. (e2d) for specific GLMs
in Theorem 6 as in Theorem 5 of KL-penalized GLMs. The proofs are deferred to Appendlx F.

Proposition 7 (Risk bound for early-stopped exponentiated gradient descent GLM estimator). Under
Assumptions As2 and As3, consider exponentiated gradient descent iterates 6‘ ) with a constant step size
satisfying n € (0,1/L) and the initialization 6 = 7 = (1/d,...,1/d)T € K. Then forany T € N and 6 € IC,

XT

Risk(035) — Risk(6) <

D (0
2>\T‘ +AT KL (0, 7).
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Proposition 8 (Oracle risk bound with sub-Gaussian noise for early-stopped exponentitated gradient descent
GLM estimator). Under the same setting as in Proposition 7, suppose that each €; in Assumption Asj is
sub-Gaussian with parameter o?. Further assume that maxi<;<a || X.;|l2 < v/n where X.; denotes the j-th
column of X. Write o := max(al, .eoy0p). For any 6 >0 and b > 0, define

. log(2d) + o
=0\ ————.
egd nb
Suppose the following stopped-time T is an integer:
1
T *
P gdn

Then, the following holds with probability at least 1 — e~°

log(2
Risk(@5)) = il Risk(9) < 20/ 20082 £9).
0: DKL(Q,W)Sb n
In general, for T = [1/(N5gan)], de., T = arg mingen{A: < Ajyq}, the same bound holds as above, with an

additional discretization error term ofn 3. (log(2d) + 6)3/2 ) (n3/2p1/2).

Theorem 6 (Specific cases of early-stopped exponentiated gradient descent GLM estimator). Under As-
sumption As4 and the setting of Proposition 8, consider the GLM with the loss function £ in (4), using the
distribution (i) to (iii) from Theorem 3. For each (i)-(iii), assume that the distribution P; and sub-Gaussian
parameter opisy are as given in Theorem 3, and the loss £ is Lpisi-smooth on Ag with respect to || - ||1:

(i) For Gaussian distribution: Lpis; = ||f]||1ﬁOO = %maxje[d} X113 <1;
(i) For Bernoulli distribution: Lpist = %Hi”l_)oo = ﬁmaxje[d] X513 < i;

(iii) For Poission distribution: Lpis = = maxje(q) Y1y exp(|| @il oo ) 27}

Respectively for (i) to (iii), consider exponentiated gradient descent updates with a constant stepsize n = 1/ Lpigt,
and define A5, as

log(2d) + 0
AXd = ODist\| ————.
egd ODist nb
Suppose the following stopped-time T is an integer:
1 L is
T = Dist
n)\egd /\egd

Then, the following holds with probability 1 — e~ for (i) and (i), or 1 — 1/n —e~% for (iii):

Risk(05)) = inf  Risk(8) < 2oy 08D )
0: Dk (0,7)<b n

In general, for T = [1/(nA;,q)], the same bound holds as above with an additional discretization error of
(e D) - 08 (20) + 5)77 [ (3/2012),

Comparison with existing literature. Extensive research has focused on investigating the theoretical
properties of the optimal aggregated predictor and designing efficient algorithms for its computation. In
this context, let 6 denote the aggregation weights output by a statistical procedure (e.g., empirical risk
minimization) or an efficient algorithm (e.g., mirror descent). The central object of interest in such analysis

is the excess risk,

RO) ~, It Blha),

where R denotes the risk function. This excess risk measures how well 6 performs compared to the best base
predictor.
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The existing literature has established a ‘fast rate’ of convergence for the excess prediction risk of some
specific aggregated predictors in model aggregation. Seminal works, including Dalalyan and Salmon (2012) and
Lecué and Mendelson (2013), demonstrate that for i.i.d. data {(z;,y;)}"; and certain bounded or quadratic
loss functions, the celebrated exponentially weighted aggregate algorithm achieves a rate of O(log d/n). This
result was subsequently extended by Juditsky et al. (2008) to a broader class of loss functions satisfying a key
structural assumption known as exponential concavity, using mirror averaging algorithms based on online
mirror descent. Later, Lecu¢ and Rigollet (2014) propose the Q-aggregation procedure, whose loss function is
a mixture of those used in model aggregation and randomized model selection (see Section 6), penalized by a
weighted ¢!-norm. The authors establish that Q-aggregation achieves the fast rate of O(logd/n) if the loss
function is strongly convex and Lipschitz on a finite interval. As we can see, a critical aspect of these fast
rate results is that they rely on the exponential concavity (or strong convexity) of the loss function, which
is a stronger condition than standard convexity. When the loss function is only assumed to be convex, a
standard parametric rate O(1/y/n) is expected, cf. Theorem 2 of Lecué (2007).

In contrast, our analysis requires neither exponential concavity assumption nor i.i.d. data points. Since
supgen, DxL(0,7) < logd (see Appendix B.3), our risk bounds imply

Risk(d) — inf Risk(6) = O (logd> .
e, \/’ﬁ
An important remark is that the above infimum is over all possible convex combinations of the base learners,
instead of only the base learners themselves. As we can see, our rate is slower than the fast rate by a factor
of v/n. We conjecture that it may be possible to recover the fast rate for GLMs by fully exploiting the strong
convexity of the loss function ¢(-) over A4. However, this refinement is beyond the scope of the present paper
and we leave it future work.

6 Application: Risk of randomized predictors

This section focuses on random model selection, another type of approach for constructing a meta-learner
from a collection of base learners. This method is distinguished from model aggregation in Section 5, since
model aggregation outputs a composite prediction as a convex combination of outputs from the base learners.
Formally, given a set of candidate models B, we will randomly select one model 8 € B according to a
probability distribution ¢ over B. If B is finite, then ¢ becomes a probability vector in the simplex A . Our
goal is to find a distribution  so that a randomly selected model 3 € B according to § behaves nicely.

A model is an any form of function g : X — ). Given a losAs function r : Y2 — R and n observed data
{(zi,v:)}7_1, we consider population risk R and empirical risk R,, of a model S as following:

R(B) = Ecx [r(800).Y)] or By x [r(B(X), V) and Ra(8) = - 3 r(Blro),m0).

n

For instance, but not limited to, for the GLMs considered in earlier sections, one may take r(y’,y) =
—yy' + A(y’), and thus, using S to represent the parameter of the GLM model,

Ra®) =t8) = -5 (il B+ Al 9)).

One approach to construct a random model selector 6 is exponential weighting based on the empirical risk
evaluated on each model. Namely, we can use

0x(dB) o< exp(—Ra(8)/X) - 7(dB), (15)

where 7 is a base measure and \ is a tuning parameter. For example, when B is finite, one possible base
measure is the uniform base measure () = 1/|B|. The above 6 is called “Gibbs posterior” in Bayesian
statistics literature, and can be equivalently defined via the following KL-divergence-penalized random model
selection problem (Alquier, 2024):

0y = %régpl?g? {]EfsNe [ﬁn(ﬁ)} + ADxk1 (0, 77)}» (16)
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where P(B) is the set of all probability measures on B and the expectatlon ]EgNQ[R (8)] is taken only with
respect to the randomness over §, i.e., Eg (R fB df). The optimization problem (16) is
sometimes referred to as information msk mzmmzzatwn in hterature that uses information-theoretic tools to
derive generalization bounds for learning algorithms (Zhang, 2006; Xu and Raginsky, 2017).

Let BAA be a random model drawn by the distribution N Using basic inequalities, we can upper bound
expected population risk of random B)\ in Proposition 9. In fact, our bounds presented below apply to any
pair of (R, R) with minimal assumptions, and only depend on

~

ﬁn—R“ :=sup |R,.(8) — R(B)|,
| ey = 500 | Rn(5) = REB)
which is related to the rate of uniform convergence of R,, to R over the model space B. Note that Eso[R(B)]
in the proposition serves a similar role of Risk(5) in Section 4 and 5. The proof is in Appendix G.

Proposition 9 (Expected population risk of model sampled via éA) Let a probability distribution 0 be as
defined in Equation (16). Then, the following bounds holds for expected population risk of a model randomly
selected via 0y: for any distribution 6 € P(B),
R 2
By, (RO~ Eana (RN <  |[Bo =B _ | +2\Dis0,m).

We should consider not just an explicit regularized estimator 0 A, but also an implicit regularized estimator.
Let Q(eg be the T-th exponentiated gradient descent iterate (3) for optimizing f(6) := Eﬂwg[R (8)], with
the 1n1t1ahzation z € P(B) and a constant step size n > 0. We can derive a similar excess risk bound for
05,? gd) using basic inequality for exponentiated gradient descent in Proposition 10. Note that the proposition
allows any arbitrarily large step size n. This is because the loss function f(6) is linear in 6, and therefore
L-smooth for any L > 0. The proof is deferred to Appendix G.

Proposition 10 (Expected population risk of model sampled via H(Qg )) Denote )\T = 1/nT. Then, the
following bound holds for expected population risk of a model randomly sampled via 9( ed), : for any stopped-time
T € N and distribution 6 € P(B),

1 1|~ 2
E, st [R(B)] — Eano [R(B)] < 53— HRn - RH oy T AT DL (0, 7).

An interesting fact is that 9 cgd) ‘and 0 are actually the same estimator in this scenario. Note that the
gradient of f is constant: V f(6 ) (R, (8))pen for any 6§ € B. Therefore, the G(eg’d) has the following form by
mathematical induction:

exp(—nTR,(8)) - 7(dB) _ exp(-R ( )/Ar) - m(dB)
Jsep(=nTRu(8) - 7(dB)  [isexp(~Rn(B)/Ar) - m(dB)
This is identical to 6y in (15), and more interestingly, in Proposition 9 and 10, we were able to observe their
equivalence without looking into the closed form solution of 6y and O (ed) " Such an equivalence between the

implicit regularization of exponentiated gradient descent and explicit regularization via KL penalty holds for
general linear loss functions f.

055 (dB) = (17)

Discussion and comparison with Alquier (2024). The main results on the population risk of B,\ in
Alquier (2024) are obtained under the assumptions that the observed data {Z;}"_; are i.i.d., and a non-

negative loss is bounded by an absolute constant C' > 0. Under this setting, they define R(3) = Ez[r(8, Z)]
and R,(8) = 23" | r(B,Z;). Then, the following holds with probability at least 1 — e~°: for any 6 € P(B),
02
By, [R(5)] ~ Esal RO)] < 1+ 2A(Dicu (0, 7) + log2 + 6).

Unfortunately, our upper bound in Proposition 9 is not always comparable to the above bound, since it is
impossible to upper bound the term ||R,, — R|[1 ) only under the bounded loss assumption. If we further
assume that B is finite, then applying Hoeffding’s inequality and a simple union bound yields

P(HE”_RH S C 10g(2ll’5'l>+5> <o,
Lo (B) 2n
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Then Proposition 9 implies that, with probability at least 1 — e ™9,

C?(log(2|B]) + 6)

Es 5, [R(B)] — Egno [R(B)] < 2n\

+ 2ADx1,(0, 7).

This bound has an additional log |B| factor compared to the bound by Alquier (2024). However, it may be
possible to remove this extra factor via a more refined analysis (in which Young’s inequality, used in the proof
of Proposition 10, is replaced by a more sophisticated bound, such as Donsker-Vadharan, which is critical in
the analysis in Alquier (2024)).

7 Other iterative algorithms and basic inequalities

The basic inequalities can be derived for other iterative algorithms as well. Here we introduce several of them
which were not used in the three applications in the paper (Section 3, 4, and 5).

7.1 Proximal gradient descent

While gradient descent corresponds to the forward Euler method for solving ordinary differential equations,
proximal gradient descent is its backward (implicit) Euler method analog, used to minimize composite function
f = g+ h with convex differentiable g, and convex but potentially non-differentiable h. Given initialization
6o and step sizes (1;)52,, proximal gradient descent iterates via

1
0141 = Prox,,n(0: —m:Vg(0:)), where Prox,(f):=argmin §||9 — 2|5 4 h(2).
z€R4

The operator Proxy, is called the proximal operator. The proximal gradient descent iterates can be equivalently
expressed as

1
Opir = 0y — 3Gl (0,), where Gy (6) = 5(9 — Prox,; (0 — an(o))). (18)

Proximal gradient descent encompasses several well-known algorithms as special cases, and some of them will
be discussed later. A key requirement of this algorithm is that the proximal operator must be computable in
closed form (or efficiently approximable), as it defines the core of each iterate.

Assumption As5 (Proximal gradient descent setting). f : R — R is a convex function of the form f = g+h,
where g is convex and differentiable, and h is convex but possibly non-differentiable. The proximal operator
Proxy, is computable.

Theorem 7 (Basic inequality for proximal gradient descent). Under Assumption Asb, consider prozimal
gradient descent with iterates (18). Suppose one of the following holds:

(i) g is L-smooth in a convex set C C R?, with step sizes n; € (0,1/L], and 8; € C for any t > 0;
(i) g is zero (i.e., f = h), with no constraint on n; > 0.
Then, for any reference point z € R% and any stopped-time T € N, it holds that

1

Or) = f(2) < ~=p=1—
fOr) = f(2) ST

(160 — 2013 — 162 =13)-

Proof of Theorem 1. The proof parallels the gradient descent case, but relies on standard inequalities involving
the proximal operator, Prox,.

Step 1: Bounding the proximity difference at ¢ and ¢ + 1. We measure proximity via the Euclidean distance.
By the definition of 6,41 in (18),

16¢ = 213 = 1641 — 213 = 20(Gip, (61), 01 — 2) — |Gy, (60)113.
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Step 2: Bounding the criterion difference f(6;) — f(z). By generalized descending lemma (Lemma H2) for
proximal gradient descent, for any z € R?, and under the respective conditions of (i) and (ii), we have:

(i)« f(Or41) = f(Or — me Gy, (64)) < f(2)
(i) : f(Or41) = F(Or — mGy, (01)) < f(2)
Substituting into result from Step 1, we obtain in both (i) and (ii):
200 (f(e41) — f(2)) < 100 = 2[13 = 16e11 — =]15.
Additionally, by applying the same lemma with z < 60;, we deduce that f(0;41) < f(6;). Therefore,
20:(f(0r) = F(2)) <110 — 2[5 = 1041 — 2[3-

Step 3: Aggregating bounds over t = 0,...,7 — 1. Summing both sides of the result from Step 2 over ¢t < T
results in a telescoping cancellation of squared norm terms, yielding

IN

F(2) + (G (80), 6, — 2) = G (613,
F(2) + (G (80), 00 — 2) — ]| Gy, (813

IN

T-1

22 o

ne(£(0r) = £(2)) < 1160 — 2113 — 1107 — 2[3.

Notable example: Projected gradient descent. For a closed convex set I C R?, choosing

0 :xzeC
o x ¢k

reduces the proximal gradient descent to the projected gradient descent over K, whose iterates follow (11).
As 0;41 € K by definition, if g is L-smooth in B;(b), Theorem 7 holds, equivalently written as, for any z € K,
< 1
= T—1

2 Zt:() Tt
Note that this is a same conclusion as in Section 4.2, where we viewed the projected gradient descent as a
special case of mirror descent.

9(0) — 9(2) (160 = =13 - llox — =13)-

Notable example: ISTA (Iterative soft-thresholding algorithm). Another popular use case of
the proximal gradient descent is ISTA for lasso penalty. Consider f(6) = 5-||Y — X063 + A||6]|; and write
9(0) = 5= ||Y — X6||3 and h(f) = Al|6]|:. The reason why ISTA is popular is due to its closed form solution
for the proximal update:

Zi—o >
1 .
Prox,, () = argﬂim%H@ = 2[5+ Allzlly = Sya(z)  where Vi € [d], [Sy(2)]i = {0 bz € =791
ek Zity oz <y
S,(+) is called a soft-thresholding operator. Note that g(6) is ||§H0p—smooth in R%. Therefore, with an
appropriate step sizes, Theorem 7 implies

1 1 1 1
— Y — X67]|2 + )||0 107112 < —|IY — Xz||2+ A —||2]12
inl 712 + M|Or(1 + 277T|| Tz < an\ zll2 + Allzlls + 2nTlIZIIz

for any z € R%. This suggests an interesting connection between ISTA and the elastic net (Zou and Hastie,
2005), but it is not exactly matched with the popular use of elastic net in practice, which use ‘alpha’ and
‘/1-ratio’ to control the penalty terms.
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7.2 NoLips algorithm

We next consider the NoLips algorithm proposed by Bauschke et al. (2017). While its iterates are the same
as those of mirror descent in (2), the NoLips variant relaxes the strong convexity of ¢ and the smoothness of
f, replacing them with another condition, as explained in Assumption As6. This algorithm can be viewed as
an instance of mirror descent but operates under a slightly different set of assumptions.

Assumption As6 (NoLips setting). Let K and Q be closed convex sets in R? such that KK C , whose
interiors are not empty. A function f: Q — R is convex on K, and it is differentiable on int(2). A function
¢ : Q2 — R is of Legendre type, and it is continuous on 2. Furthermore, there exists a constant L > 0 such
that Lo — f is conver on K Nint(2), called the ‘Lipschitz-like convexity condition’.

Theorem 8 (Basic inequality; Last iterate of NoLips algorithm). Under Assumption AsG, consider NoLips
iterates which has the same update as (2) with an initialization 0y € int(Q) and step sizes e € (0,1/L]. Then,
for any reference point z € KC and stopped-time T € N it holds that

7(60r) ~ £(2) < e (Dolz,00) = Dolz,07)).

t=0 "t

In particular, for a constant step size n; = n, this simplifies to

F(0r) = £(2) < = (Doz100) = Dofz,01)).

Proof of Theorem 8. The proof proceeds similarly to Theorem 2, with careful use of Assumption As6.
Step 1: Bounding the proximity difference at ¢ and ¢ + 1. We measure proximity via the Bregman divergence.
Note that 6, € K Nint(2) for any ¢, due to Lemma A2. Following the same Step 1 of Theorem 2, we have

Ne(Vf(0r), 0141 — 2) < Dy(2,0:) — Dy(2,0141) — Dp(Or41,0:)-

Step 2: Bounding the criterion difference f(6;) — f(z). Note that this step is an adaptation of Lemma 5 and
Theorem 1.i in Bauschke et al. (2017). Since L¢ — f is convex on K Nint(2) and 6y, 0:11 € K Nint(2), by
Lemma H3, for any ¢,

F(Ori1) < f(00) + (VF(0r), 041 — 01) + LDy (0111, 0;).

Moreover, since f is convex on I, we know f(0;) < f(2) + (V f(6:),0; — z) for any z € K. Therefore, we have
f(Or1) < f(2) +(V(0r), 011 — 2) + LDy (0p41, 64).
Combining this with the result from Step 1, we obtain
M (F(Br41) = () < Dol=.00) = Dol 001.1) = (1= L) Do (01, 6).

As n; < 1/L, this implies
ur (f(9t+1) - f(Z)) < Dy(2,0:) — Dy(z,0r41).

Moreover, we know that f(6;41) — f(6¢) for any ¢, by plugging z < 0, to the above inequality. Thus, we have

f(eT) - f(Z) < D¢(Z,00) - D¢(2,0t+1)-

Step 3: Aggregating bounds over t = 0,...,7 — 1. Summing both sides of the inequality from Step 2 over
t < T results in a telescoping cancellation of the Bregman divergence terms, yielding

S (10r) ~ 52)) < Dotz 00) — Dtz 0r).

This completes the proof. O
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8 Experiments

This section presents empirical results that corroborate our theoretical findings on the relationship between
implicit and corresponding explicit regularization. Three main results are presented: two aspects of optimiza-
tion dynamics in training time; and the prediction risk of the estimators for the test time, as defined in (5).
The Python code to reproduce our experiments is available at https://github.com/100shpaik/basicineq.

Optimization tasks. We consider two iterative algorithms: gradient descent (GD), initialized at 0 € R%;
and exponentiated gradient descent (EGD) initialized at the uniform distribution 7 = (1/d,...,1/d) € Aq.
They are applied to three GLMs (logistic, linear, and Poisson regression) in both underparametrized and
overparametrized (n < d and n > d) regimes. Their explicit regularization counterparts are solved as well:
ridge-regularization for GD; and KL-regularization for EGD.

Notation. We denote the estimators from GD and EGD at iteration 7" by 67, and the estimators from
explicit regularizations with the parameter A by 0. For the exact definition of each estimator, please recall
(1), (3),(6), and (14). The total elapsed time for the iteration T is defined as 7 = 7 := ZtT;()l ¢, which
corresponds to the time in the associated continuous flow for iterative algorithms.

Elapsed time 7 and regularization parameter \. The range of 7 and 1/\ covers [107%,103] for GD,
and [107%,10%] for EGD. Throughout, the z-axis of any figure represents the total elapsed time 7 but in log;
scale. Further details about the optimization, including learning rate schedules {n;}72, and numerical solvers,
can be found in Appendix I.

Data distributions. Training data (X,Y) € R"*% x R™ are generated as follows. The entries of the
design matrix X are independently sampled from A/(0,1), and thus the population covariance is ¥ = I.
Y is generated from a well-specified model with a true parameter 6;,,,. The components of 6, for GD
were independently sampled from Unif[—1, 1]; for EGD they were independently sampled from Unif[0, 1] and
normalized to have a unit || - ||;-norm, implying 6ine € Ay. We introduce additional parameter v > 0 which
controls the signal-to-noise ratio of Y. Then y; for ¢ € [n] independently as the following:

e For linear regression, y; = = Oue + ve; where €; ~ N(0,1);

e For logistic regression, y; ~ Bernoulli(p;) where p; = 1/(1 + exp(—7; 0irue));

e For Poisson regression, y; ~ Pois(y;) where y; = y2, Oirue-
The specific values of (n,d) and v are summarized in Table 1. The values of v were selected to effectively
show the non-monotonic prediction risk curves, as too small or large ~ typically leads to monotone curves.

GD EGD
GLM underparam. overparam. underparam. overparam.
(n,d) = (200,20) | (n,d) = (100,200) | (n,d) = (200,20) | (n,d) = (30,60)
Linear ¥=25.0 ¥ =25.0 ¥=1.0 v=0.1
Logistic v=0.3 ¥=0.5 ¥=1.5 v =10.0
Poisson v=0.1 v=0.15 vy=12 v=3.5

Table 1: (n,d) and -y values used in the experiments.

8.1 Training-time envelope functions

We first examine the optimization dynamics of the estimators in relation to the theoretical bounds derived in
Corollary 1(a) and 3. The results are plotted in Figure 1. For each subfigure, three rows represent different
GLM tasks, and two columns represent (n,d)-regimes.

Figure 1(a) displays the results for GD. The red line shows the quantity f(67) + ||0r||3/(47) for the GD
iterates. This is bounded by the blue and green lines for the ridge-regularized estimators, whose values are
F(B)) + A|6x]|3 where A = 1/7 or A = 1/(47) respectively, as suggested in Corollary 1. We can also observe
that the red line closely follows the green line, suggesting more resemblance of the GD and A = 1/(47) in the
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prediction risk figure as well. Meanwhile, it is well known that f(0x) 4+ A||0x |2 is a decreasing function of
A > 0; see Lemma I1.

Figure 1(b) displays similar but more nuanced results for EGD. Again the red line is for the EGD estimator,
whose value is f(0r) + |0 — 7||3/(47). The upper bound from Corollary 3 is the orange line with the value
of f(0y) + |0y — m||2 with A = (d +1)/(27). However, this bound is much looser than what we have seen in
the GD subfigure. Plotting the blue and green line, which displays the same value as the orange line but with
A=1/7 and A\ = 1/(47), we can empirically see tighter envelope functions.

Figure 1(c) is replacing the ||§ — 7||? penalty term from the subfigure (b) to Dxr, (6, 7), which is more
natural to the KL-regularized estimator. Figure 1(c) is visually very similar compared to Figure 1(b), with a
couple deviation. Precisely speaking, the EGD trajectory (red) is almost unchanged compared to Figure 1(b),
yet the envelopes values from the KL-regularized estimator (blue, green, orange) slightly decreased. With
this more natural penalty, the red line is now more centrally located between the blue and green envelopes.
This finding will be revisited in the prediction risk figure.

Meanwhile, alignments of these curves for very small or large 7 are intuitive. When 7 — 0, equivalently
A — 00, both estimators are close to the initialization 0, because there was no update for 61, and éA should
be near 0 as the penalty is significantly large otherwise. On the other hand, when 7 — oo or A — 0), both
estimators achieves the infimum of the original loss function without any penalty.

8.2 Prediction risk

We now compare the prediction risk, defined in (5), using the same estimators plotted in the previous figure.
Figure 2 displays the prediction risk curves against total elapsed time 7. The color scheme of red, blue, and
green is consistent with Figure 1.

Figure 2(a) shows the GD results. The red line for the GD estimator tracks the green line for the EGD
estimator with A = 1/(47) than the blue line. This is consistent with an observation from Figure 1(a), a
closer resemblance of the red and green line in the training envelope functions.

Figure 2(b) for EGD tells a different story, which aligns with the observation in Figure 1(c). The EGD
curve (red) initially follows the A = 1/7 curve (blue) for small 7, and their minimum risks are also achieved
in similar locations. However, in larger 7, the red line goes in between of the blue and green.

Regarding the minimum prediction risk, while the implicit and explicit regularizations indeed obtain
similar minimum values, they can both be better or worse than the other, depending on the GLM tasks,
(n, d)-regimes, and randomness on the training data.

8.3 Solution path

Providing more granular comparison, we visualize the solution paths during the training, i.e., the evolution of
each component of estimators. Figure 1 compares the solution paths of 8 and 0  side-to-side (columns),
for three GLMs (rows) in two (n,d)-regimes (columns). The underparametrized regime displays all d = 20
components, while the overparametrized regime only displays the first 40 components. The log;, scale z-axis
represents 7 for the iterative regularization and 1/ for the explicit regularization.

The solution paths of two estimators look strikingly similar. Yet the equivalence of the solution paths
was not formally proved in the paper, this provides more compelling visual evidence for the deep connection
between the implicit and corresponding explicit regularization. Notably, for EGD and KL-regularization,
many components converge to zero, so that induces sparsity even though the true parameter 6, is dense.

In the overparametrized regime for GD and ridge-regularization, the logistic and Poisson regression
estimators diverge as 7 increases. This is consistent with the known results. For logistic regression on linearly
separable data, the GD solution diverges while its direction converges to the max-margin direction (Soudry
et al., 2018), and linear separability is more likely to happen in an overparmetrized regime. For Poisson
regression, a solution exists if any only if there exists § € Null(X ") such that y; + &; > 0 for i € [n]. In
overparametrized regime, as X ' € R¥" and n < d, it is more likely to be Null(X) = (), thus a solution only
exists when g; > 0 for any 7.
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GD Training-time Envelope Functions w/ Ridge penalty

EGD Training-time Envelope Functions w/ Ridge Penalty
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Figure 1: Training loss plus penalty trajectories (y-axis) for total elapsed time 7 (x-axis; log,,-scale). Each
subfigure has six plots, corresponding to three GLMs in two (n, d)-regimes. The red color represents 67 and
the other color represents 6, with different \’s as a function of 7.
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Figure 2: Prediction risk (y-axis) for total elapsed time 7 (z-axis; log,y-scale). Each subfigure has six plots,
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GD vs RIDGE-penalty Solution Path
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Figure 3: Solution path (y-axis) for 7 or 1/A (z-axis; log;g-scale). The underparametrized regimes visualized
all d = 20 components of the estimators, but the overparametrized regimes only shows the first 40 components.
The color scheme in each plot pair of the implicit and explicit regularization is the same, as they are matched
to the ordering of the components.
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9 Discussion

We introduced basic inequalities for iterative algorithms as a unifying framework for the optimization
and statistical analysis. This framework allows a comparison between the implicit regularization of the
iterative algorithms and the corresponding explicit regularization in the original optimization problem. We
demonstrated the broad utility of this framework through training dynamics and prediction risk analysis.
However, our results also reveal a trade-off: the generality of basic inequalities and the cost of tightness, as
the resulting bounds are not always as tight as those from some algorithm- or problem-specific observations
in the literature.

This trade-off opens several interesting directions for future research. First, using stronger assumptions
on loss functions, such as strong convexity, may lead to tighter basic inequalities that can refine the analysis.
Conversely, we may extend the applicability of this framework by relaxing assumptions on losses, such
as non-smoothness or non-convexity, as well as using modern models such as deep neural networks and
transformers. These extensions would cover larger loss and algorithms classes from which we can get insights
via basic inequalities.

References

Alnur Ali, J Zico Kolter, and Ryan J Tibshirani. A continuous-time view of early stopping for least squares
regression. In The 22nd international conference on artificial intelligence and statistics, pages 1370-1378.
PMLR, 2019.

Pierre Alquier. User-friendly introduction to pac-bayes bounds. Foundations and Trends®) in Machine
Learning, 17(2):174-303, 2024.

Navid Azizan and Babak Hassibi. Stochastic gradient/mirror descent: Minimax optimality and implicit
regularization. In International Conference on Learning Representations, 2019.

Francis Bach. Self-concordant analysis for logistic regression. 2010.

Peter Bartlett, Michael Collins, Ben Taskar, and David McAllester. Exponentiated gradient algorithms for
large-margin structured classification. Advances in neural information processing systems, 17, 2004.

Heinz H Bauschke, Jonathan M Borwein, et al. Legendre functions and the method of random bregman
projections. Journal of convexr analysis, 4(1):27-67, 1997.

Heinz H Bauschke, Jérome Bolte, and Marc Teboulle. A descent lemma beyond lipschitz gradient continuity:
first-order methods revisited and applications. Mathematics of Operations Research, 42(2):330-348, 2017.

Jonathan Baxter. A model of inductive bias learning. Journal of artificial intelligence research, 12:149-198,
2000.

Amir Beck and Marc Teboulle. Mirror descent and nonlinear projected subgradient methods for convex
optimization. Operations Research Letters, 31(3):167-175, 2003.

Leo Breiman. Stacked regressions. Machine learning, 24(1):49-64, 1996.

Peter Bithlmann and Sara Van De Geer. Statistics for high-dimensional data: methods, theory and applications.
Springer Science & Business Media, 2011.

Augustin Cauchy et al. Méthode générale pour la résolution des systemes d’équations simultanées. Comp.
Rend. Sci. Paris, 25(1847):536-538, 1847.

Michael Collins, Amir Globerson, Terry Koo, Xavier Carreras Pérez, and Peter Bartlett. Exponentiated
gradient algorithms for conditional random fields and max-margin markov networks. Journal of Machine
Learning Research, 9:1775-1822, 2008.

Arnak S Dalalyan and Joseph Salmon. Sharp oracle inequalities for aggregation of affine estimators. 2012.

28



Steven De Rooij, Tim Van Erven, Peter D Griinwald, and Wouter M Koolen. Follow the leader if you can,
hedge if you must. The Journal of Machine Learning Research, 15(1):1281-1316, 2014.

Edgar Dobriban and Stefan Wager. High-dimensional asymptotics of prediction: Ridge regression and
classification. The Annals of Statistics, 46(1):247-279, 2018.

Bradley Efron, Trevor Hastie, Iain Johnstone, and Robert Tibshirani. Least angle regression. The Annals of
statistics, 32(2):407-451, 2004.

Leonhard Euler. Institutiones calculi integralis, volume 1. impensis Academiae imperialis scientiarum, 1792.

Suriya Gunasekar, Jason Lee, Daniel Soudry, and Nathan Srebro. Characterizing implicit bias in terms of
optimization geometry. In International Conference on Machine Learning, pages 1832-1841. PMLR, 2018.

Trevor Hastie, Andrea Montanari, Saharon Rosset, and Ryan J Tibshirani. Surprises in high-dimensional
ridgeless least squares interpolation. Annals of statistics, 50(2):949, 2022.

David Helmbold, Jyrki Kivinen, and Manfred KK Warmuth. Worst-case loss bounds for single neurons.
Advances in neural information processing systems, 8, 1995.

David P Helmbold, Robert E Schapire, Yoram Singer, and Manfred K Warmuth. On-line portfolio selection
using multiplicative updates. Mathematical Finance, 8(4):325-347, 1998.

Daniel Hsu, Sham Kakade, and Tong Zhang. A tail inequality for quadratic forms of subgaussian random
vectors. 2012.

Ziwei Ji and Matus Telgarsky. The implicit bias of gradient descent on nonseparable data. In Conference on
learning theory, pages 1772-1798. PMLR, 2019.

Ziwei Ji, Miroslav Dudik, Robert E Schapire, and Matus Telgarsky. Gradient descent follows the regularization
path for general losses. In Conference on Learning Theory, pages 2109-2136. PMLR, 2020.

Anatoli Juditsky, Philippe Rigollet, and Alexandre B Tsybakov. Learning by mirror averaging. 2008.

Anatoli B Juditsky, Alexander V Nazin, Alexandre B Tsybakov, and Nicolas Vayatis. Recursive aggregation
of estimators by the mirror descent algorithm with averaging. Problems of Information Transmission, 41
(4):368-384, 2005.

Jyrki Kivinen and Manfred K Warmuth. Exponentiated gradient versus gradient descent for linear predictors.
Information and computation, 132(1):1-63, 1997.

Guillaume Lecué. Optimal rates of aggregation in classification under low noise assumption. 2007.

Guillaume Lecué and Shahar Mendelson. On the optimality of the aggregate with exponential weights for low
temperatures. 2013.

Guillaume Lecué and Philippe Rigollet. Optimal learning with g-aggregation. 2014.

B Lemaire. An asymptotical variational principle associated with the steepest descent method for a convex
function. Journal of Convex Analysis, 3:63-70, 1996.

Gilbert Leung and Andrew R Barron. Information theory and mixing least-squares regressions. IEEE
Transactions on information theory, 52(8):3396-3410, 2006.

Kevin Lin, James L. Sharpnack, Alessandro Rinaldo, and Ryan J Tibshirani. A sharp error analysis for
the fused lasso, with application to approximate changepoint screening. Advances in neural information
processing systems, 30, 2017.

Arkadi Nemirovski, Anatoli Juditsky, Guanghui Lan, and Alexander Shapiro. Robust stochastic approximation
approach to stochastic programming. SIAM Journal on optimization, 19(4):1574-1609, 2009.

29



Arkadij Semenovi¢ Nemirovskij and David Borisovich Yudin. Problem complexity and method efficiency in
optimization. 1983.

Yurii Nesterov. Introductory Lectures on Conver Optimization: A Basic Course, volume 87. Springer Science
& Business Media, 2003.

Behnam Neyshabur, Ryota Tomioka, and Nathan Srebro. In search of the real inductive bias: On the role of
implicit regularization in deep learning. arXiv preprint arXiv:1412.6614, 2014.

David Pollard. A few good inequalities. 2017. URL http://www.stat.yale.edu/ pollard/Courses/600.
spring2017/Handouts/Basic.pdf.

Lutz Prechelt. Early stopping-but when? In Neural Networks: Tricks of the trade, pages 55-69. Springer,
2002.

Garvesh Raskutti, Martin J Wainwright, and Bin Yu. Early stopping and non-parametric regression: an
optimal data-dependent stopping rule. The Journal of Machine Learning Research, 15(1):335-366, 2014.

Sashank J Reddi, Satyen Kale, and Sanjiv Kumar. On the convergence of adam and beyond. arXiv preprint
arXiv:1904.09237, 2019.

R Tyrrell Rockafellar. Convex analysis, volume 28. Princeton university press, 1997.
Igal Sason. On reverse pinsker inequalities. arXiv preprint arXiv:1503.07118, 2015.

Daniel Soudry, Elad Hoffer, Mor Shpigel Nacson, Suriya Gunasekar, and Nathan Srebro. The implicit bias of
gradient descent on separable data. Journal of Machine Learning Research, 19(70):1-57, 2018.

Arun Suggala, Adarsh Prasad, and Pradeep K Ravikumar. Connecting optimization and regularization paths.
Advances in Neural Information Processing Systems, 31, 2018.

Haoyuan Sun, Khashayar Gatmiry, Kwangjun Ahn, and Navid Azizan. A unified approach to controlling
implicit regularization via mirror descent. Journal of Machine Learning Research, 24(393):1-58, 2023.

Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society
Series B: Statistical Methodology, 58(1):267-288, 1996.

Ryan Tibshirani. High-dimensional regression: Ridge, 2023.

Sara A van de Geer and Peter Biihlmann. On the conditions used to prove oracle results for the lasso.
Electronic Journal of Statistics, 3:1360-1392, 2009.

Roman Vershynin. High-dimensional probability: An introduction with applications in data science, volume 47.
Cambridge university press, 2018.

David H Wolpert. Stacked generalization. Neural networks, 5(2):241-259, 1992.

Jingfeng Wu, Peter L Bartlett, Matus Telgarsky, and Bin Yu. Large stepsize gradient descent for logistic loss:
Non-monotonicity of the loss improves optimization efficiency. In The Thirty Seventh Annual Conference
on Learning Theory, pages 5019-5073. PMLR, 2024.

Jingfeng Wu, Peter Bartlett, Matus Telgarsky, and Bin Yu. Benefits of early stopping in gradient descent for
overparameterized logistic regression. arXiv preprint arXiv:2502.13283, 2025.

Aolin Xu and Maxim Raginsky. Information-theoretic analysis of generalization capability of learning
algorithms. Advances in neural information processing systems, 30, 2017.

Yuan Yao, Lorenzo Rosasco, and Andrea Caponnetto. On early stopping in gradient descent learning.
Constructive approximation, 26(2):289-315, 2007.

Tong Zhang. Information-theoretic upper and lower bounds for statistical estimation. IEEE Transactions on
Information Theory, 52(4):1307-1321, 2006.

30


http://www.stat.yale.edu/~pollard/Courses/600.spring2017/Handouts/Basic.pdf
http://www.stat.yale.edu/~pollard/Courses/600.spring2017/Handouts/Basic.pdf

Tong Zhang and Bin Yu. Boosting with early stopping: Convergence and consistency. Annals of Statistics,
pages 1538-1579, 2005.

Hui Zou and Trevor Hastie. Regularization and variable selection via the elastic net. Journal of the Royal
Statistical Society Series B: Statistical Methodology, 67(2):301-320, 2005.

31



A Regarding Section 2: Complements for Theorem 1 and 2

A.1 Gradient descent

Lemma A1l (Descent lemma for gradient descent). Under Assumption Asl, consider gradient descent with
iterates (1) and step sizes n; € (0,2/L]. Then, for any t >0,

L
F(Or1) < f(0e) —me(1 — 5m)||Vf(9t)||g < f(0r).
Proof of Lemma A1. The L-smoothness of f implies that

FOri1) < F(0:) + VFO) T (0141 — 01) + g”etﬂ — 03

Since ;11 = 60; —n:V f(6:) as in (1), it completes the proof. O

A.2 Bregman divergence and ¢
Lemma A2 (Well-definedness of the Bregman divergence induced by ¢). Under Assumption As2, a function
D(-,v) : Q — R? is well-defined if and only if v € int(£2).

Proof. By the definition of Legendre type, ¢ is essentially smooth. Also, as ¢ is a proper continuous convex
function over a closed domain §2, by Theorem 7.1 in Rockafellar (1997), ¢ is a closed function. Therefore, by
Theorem 26.1 in Rockafellar (1997), we know d¢(v) = 0 if v ¢ int(Q2), and d¢(v) = {V¢(v)} if v € int(Q). O

Lemma A3 (Strong convexity and lower bound of Bregman divergence). Under Assumption As2 and AsS3,

for any u € K and v € K Nint(2),
@
Dy(u,) > S~

Proof of Lemma A3. Note that Dy(-,v) is well-defined by Lemma A2. The desired bound directly follows
from the a-strong convexity of ¢ in K: Dy(u,v) = ¢(u) — ¢p(v) — (Vo(v),u — v) > Z|lu — v||. O

A.3 Mirror descent

Lemma A4 (Well-definedness of Dy(-,6;) in mirror descent). Under Assumption As2, consider mirror
descent updates with iterates (2). Then, if 0y € K Nint(Q) then 6, € KNint(Q) for any t > 0. In other words,

Dy(-,0;) : Q= R is well-defined for any t > 0.
In particular, when KL = Q, this is equivalent to: if 6y € int(K) then 6; € int(K) for any t > 0.

Proof. Assume 60, € K Nint(2), then Dy(-,0;) is well-defined by Lemma A2. Recall 6,41 in (2):
Or 1 = argr;ginm(Vf(Ht),@} + Dy(0,6y).
€

For brevity, define a function F': K — R as F(6) = n,(V f(6,),0) + Dy(0,0;). Due to the first order optimality
condition, there exists a subgradient g € OF(0;41) such that (g,0 — 6;41) > 0 for all § € K. Meanwhile, since
K C Q, by Theorem 23.8 in Rockafellar (1997), for any 0 € K,

OF (6) = 0(n(V£(6:).0) ) +0(Do(0,0)) = meV £(6:) = 09(0) — V(01).

Suppose 6;41 ¢ int(Q2), then 9¢(0;41) = B since ¢ is of Legendre type, as observed in Lemma A2. Therefore,
OF (0:41) is also empty, which is contradictory to the existence of the aforementioned subgradient g. Therefore,
0141 € int(Q), and thus Dy(-,0:41) : @ — R is well-defined. The proof is completed by mathematical
induction. O
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Lemma A5 (Three-point inequality for mirror descent). Under Assumption As2, consider mirror descent
updates with iterates (2). Then, for any z € K and t > 0,

Ne(Vf(0r), 041 — 2) < Dy(2,0:) — Dg(2,0141) — D (0141, 064)-

Proof of Lemma A5. For brevity, define F'(8) = ni(V f(6,),0) + Dy(0,6,). By Lemma A2 and the first order
optimality condition for 6;, 1,

VF(HH_l) = ntVf(Ht) + V¢(9t+1) - V¢(9t) and 0 S <VF(9H_1), z — 9t+1> for any z < K.
Rearranging the terms, this is equivalent to

nt<vf(9t)7 0t+1 — Z> S <V¢(0t+1) — V(Z)(Qt),z — 0t+1> fOI‘ any z e ’C

Since V¢(6;) and V¢(6,41) are well-defined, the standard three-point identity for Dy suggests that

Dy(z,0¢41) + Dg(0r11,0:) — Do(2,0:) = (V(6r) — VP(Ori1), 2 — Ory1),

which concludes the proof. O

Lemma A6. Under Assumption As2, consider mirror descent updates in (2). Then, for any t € Ny and
zeK,
1 (f(0:) = f(2)) S ne({VF(0:),00 = Opir) + Dy(2,0:) — Dy(2,0141) — Dy (0141, 0:).-

Proof of Lemma A6. Since f is convex in K, we have

f(0) < f(2) +(VF(0r), 00 — 2) = f(2) + (Vf(0r), 00 — Or41) + (Vf(0r), 0141 — 2).

Multiplying both sides by 7,

me(£(8) = £(2)) < mATS O, 00 = Bus) + (T £(80), 6011 — 2).

Applying Lemma A5 completes the proof. O

Lemma A7 (Descent lemma for mirror descent). Under Assumption As2 and As3, consider mirror descent
updates in (2) with the step sizes n; € (0,2a/L]. Then, for any t € Ny,

F0rs2) < 100+ (5 = S )10 = Bl < £,

Proof of Lemma A7. Since f is L-smooth with respect to || - || in K N int(Q2), it follows that

L
(Vf(0:), 01 — Or1) < f(0r) — f(Or1) + 5\\9t+1 — 0.
Meanwhile, Lemma A5 with z = 6; yields
1 1
(VF(0r), 011 — 0:) < ——Dy(01,0111) — —Dy(Or11,04)-
uiz Mt
Combining these two inequalities, we obtain that
L , 1 1
F(Or1) < f(0:) + §||9t+1 — 01" — ;D¢(9t79t+1) - ;D¢(9t+1a9t)~
t t
Since both Dg(0;,0;41) and Dg(0;41,0;) are lower bounded by §||6;11 — 6;]|?> by Lemma A3, the proof is

completed by noting that n; < a/L. O

33



B Regarding Section 3: Complements for Corollary 1 to 4

B.1 Proof for part (d) and (e) of Corollary 1

(d). Note that the projection map Projg(u) is well-defined as S is closed and convex. Let s € S. From part
(c), the sequence {]|0; — s||2}2, is non-increasing and bounded below by 0, hence it converges. This implies
the sequence {6;}$2, is bounded. By the Bolzano-Weierstrass theorem, there exists a subsequence {6y, }52,
that converges to a limit point 0., := lim;_, 0¢,. By the continuity of f and the result from part (b), we
have f(0x) = lim; oo f(0¢,) = inf f. Thus, 0, € S.

Now we show the entire sequence converges to 6. Since 0, € S, part (¢) implies that for any ¢ > ¢;,
[10: — Oooll2 < |01, — Oooll2- As @ — oo, the right-hand side converges to 0. Therefore, lim; o0 ||0: — 0|2 = 0,
which means lim; o, 0; = 0.

Finally, by the continuity of the norm, for any s € S, |0 — s||2 = lim;— 0 ||z — s]|2 < ||#o — s||2- Choosing
s = Projg(6o) gives [|floc — Projg(bo)ll2 < [0 — Projg(fo)|2 = Dists(bo).

(e). Let P:=Projg(fy) and v = P — 0. For any ¢ > 0, define 8. := P + ¢ Distg(6p) - (v/||v|]2) € S. Since
Be € S, due to part (¢) and (d), we must have ||#oc — Bc|l2 < |60 — Bel|2. Since the points 8, P, and S, are
collinear by construction,

1000 = Bellz = 11000 = Pll2 + [P = Bell2 = [[vll2 + ¢ - Dists(fo)-
By the Pythagorean theorem,
160 = Bell3 = 1160 — P13 + [P = Bell3 = Dists(80)° + (¢ Dists(60))* = (1 + ¢) - Dists (60)*.
Substituting these expressions into the inequality ||0oc — Bell2 < ||60 — Bell2 gives us that
[vll2 + ¢ - Dists(fg) < v/1 + ¢2 - Dists(6o).
As ¢ — 00, the term v/1+ c2 — ¢ — 0. Therefore, we must have [|v|s < 0, implying v = 0, and thus, P = 0.

B.2 Proof for part (d) and (e) of Corollary 2
(d). Fix s € S. From part (c), the sequence {Dy(s, 0:)}52, is non-increasing. The lower bound Dy (s, 6;) >

2|ls — 0;]|* implies that the sequence {6;}72 is bounded with respect to || - ||, and thus bounded with respect

to || - ||2. Since the sequence lies within the closed set K, it has a convergent subsequence {6y, }5°; with limit

0o :=lim;_, o 0;, € K. By continuity of f on K and the result of part (b), we have f(6,,) = inf f, therefore
O € 8S.

We now show that the entire sequence of {6;}2, converges to 6. Suppose this is not true. Then there
exists a subsequence {f;,}3%; and § > 0 such that [|0;;, — 0| > ¢ for all j. With the same argument we

did earlier, there exists a sub-subsequence {Htjk }22 ; that converges to another limit point 0 € S such that
o0 — ool > . Considering two different, assumptions given in the theorem statement, we can prove
Dy(0,0:,) =0 as i —o00:

(i) Suppose S Nint(2) # . Choose any s € S Nint(Q). Since {Dy(s,0,)}2, is bounded, by Theorem
3.8(ii) in Bauschke et al. (1997), we know that 0o, € int(2) and Dy(0s0,6;,) — 0 as i — oo.

(ii) Suppose for any y € 2 and for any sequence {y,}52; C int(2) converging to y, Dy(y,yn) — 0. Then
we know Dy (00, 0:,) — 0 as i — co.

Then, by its decreasing nature proved in part (b), we conclude that Dy (0o, 8:) — 0 as t — co. Similarly we
know that Dy(0ec,8:) — 0. However, these give a contradiction:

max (D (0oc.01), Dol0oc: 0r)) = mas (510 = 041, S0 = 04]1%) = 3(3)2.

Thus, the entire sequence {6;}$2, must converge, and we conclude

t—o0
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(e). Suppose S is a non-empty affine subspace with S C int(Q). For brevity, write P := BregProjq(6y) € S.
Let v := P — 0o # 0, then P 4 cv € S for any ¢ € R since S is affine. Meanwhile, note that V¢ (P) and
V¢ (0s) are well-defined since P, € S C int(€2).

We know three inequalities about P, 6, and P + cv. First, the three-point identity of Dy gives

Dy(P + cv,04) — Dy(P + cv, P) — Dy(P,0s0) = (VO(P) — V(00s), P + cv — P).

Second, by the result of part (c), we know that Dy (P + cv,0) < Dg(P + cv,8). Third, as S is affine, the
generalized Pythagorean theorem for Bregman projection holds with equality:

D¢(P —|— Ccv, 90) = D¢(P + C’U,P) + D¢(P7 90)
Combining these three inequalities, we have
(VO(P) — Vp(0), cv) < Dy(P + cv,000) — Dy (P + cv, P) — Dy (P, 0)

< Dy(P + cv,00) — Dy(P + cv, P) — Dy(P, 0)
= Dy(P,0y) — Dy(P,0).

Since the above inequality holds for arbitrary ¢ € R, we conclude Vé(P) = V¢ (0 ). This implies
0=(Vo(P) = V¢(b), P = b) > | P — 900”27

where the last inequality holds by the alternative definition of a-strong convexity. Thus v = 0 and 6, = P.

B.3 Proof of Corollary 3

First we will prove (i) in the corollary statement using Corollary 2. Note that the negative entropy function
¢ is l-strongly convex with respect to || - ||; due to Pinsker’s inequality. Also, it is well known that the
Bregman divergence generated by the negative entropy function is the KL divergence: for a = (ay,...,aq)"
and b= (by,...,bq) ",

d
D¢,(a, b) = Zj:l a; 1og(aj /b])
Let s; := z; — 1/d. Then Z?:I sj=0and ||z — 7|1 = Z?Zl |sj]. Observe that

d

d
) = sz log(dz;) = Z(s] +1/d)log(1 + ds;)
j=1

j=1

d

d 2 d
(s +1/d)ds; = Z 2 al) = G-
j=1

<

‘M&

<
Il
—_

where the first inequality holds from log(1 + z) < x for # > —1 (and when ds; = —1, the first inequality
holds with equality where both sides are zero due to (s; + 1/d)-term). The inequality (x) holds due to follow
reasoning. Let C'=3".s;-1(s; > 0), then >, s;-1(s; < 0) = C and ), |s;| = 2C since ), s; = 0. Therefore,

Zsf:Zsf (s; >0) —l—Zs 1(s; < 0)
< (Xlsidsi 2 o)) (Xl -1 <o))2 =202 = (3 Jsil)?/2.

%

Thus, as we derived that Dk, (z,7) < (d/2)||z — 7|3 for any 2 € K where 7 is uniform, Corollary 2(a)
completes the first half of the proof.

To prove (ii) in the corollary statement, we need a different upper bound on Dy(z, ), then following
similar steps as in the proof of Corollary 2(a). By Theorem 1 of Sason (2015), we know that for any z € IC,

logd
Dx1,(z,m) < o8

Iz =l
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Also, as we have already observed in Corollary 2(a), Dky(z,0r) > 160 — 67 — 3|z — 6o||*>. Therefore,

logd
2

1 1
Dxy(z,m) — Dxn(z,0r) < 2 —6oll1 — 1||90 —0r|” - §||Z — o

Finally, the basic inequality in Theorem 2 completes the proof.

B.4 Lemma for Corollary 4

Lemma B1 (The solution set of the GLM is affine). Consider the GLM loss and estimator in Definition 1.
Suppose that the search space is {0 : 6 € K} with an affine set KC (e.g., R or unbounded simplex), and A is a
strictly convex function. Then the solution set of GLM is either empty or an affine set.

Proof. Say the solution set is S. Suppose S is not empty, and s € S. Define a set U := KN ({s} + {v € R?:
Xv = 0}), which is an affine set. Then, it is enough to show that S = U. Clearly, S D U since the GLM loss
function £(f) depends on 6 only via X6.

To show S C U, take any element v in U, and write v = u — s. Since £(s) = £(u) = mingex £(6) and £(+) is
a convex function (see Lemma D1), we know that £(s+ cv) = £(s) for any ¢ € (0,1). Therefore, differentiating
twice with respect to ¢, we get that

2 .

0= %E(s +cv) = %(u V(s +cv)) = (v, V(s + cv)v) = (Xv) " diag (A(X(s + cv)ie[n]))Xv

= Z(Xv)fA((Xs + eXv);).

Since A(-) > 0 due to strict convexity, we have Xv = 0. In conclusion, u € ({s} + {v € R? : Xv = 0}), which
implies S C U. O

C Generalized Linear Models

Generalized linear models (GLMSs) refer to a broader model class related to diverse distributions within the
exponential family, moving beyond the linear regression which is naturally related to the Gaussian distribution.
An univariate exponential family distribution, in its canonical form, models the density or mass function
p(z]€) proportional to exp(£S(z) — A(§)). Here, £ € R is the natural parameter, S : R — R is the sufficient
statistic (often, and in our focus, S(z) = z), and A : R — R is the cumulant function. Key properties derived
from A are E[S(Z)] = A(£) and Var(S(Z)) = A(¢), where dots denote differentiation. Familiar examples
include: Gaussian distribution with N(u,0?) with fixed 02 has £ = u, S(2) = 2, and A(¢) = £2/2; Bernoulli(p)
has ¢ = log(p/(1 — p)) which is called the logit link, S(z) = z, and A(£) = log(1 + €%); and Poisson () has
¢ =log(u) which is called the log link, S(z) = z, and A(£) = €.

In a GLM, the natural parameter £ is assumed to be linearly related to a predictor vector € R via
& =270, where §# € R%. Under this assumption, estimation of 6 is performed by maximum likelihood for the
chosen exponential family.

The formal definition of the GLM loss function and estimator are defined as the following. Given data
(z;,y:)™; € RY x R and an exponential family characterized by (S, A), assume that §; =z, 0 fori =1,...,n.
The maximum likelihood estimator for 6 is

n n

A 1 1
0o ;= argmin — Y —logps a(yi|z; 0) = argmin — ( — S(y)x, 0+ A(a::@)) (19)
perd T ; gcrd M ;

The main article assumes that the sufficient statistic is the identity map, i.e., S(y) = y. However, our
analytical framework can be readily extended to general S by substituting y; with S(y;) for where appropriate.
For instance, the vector Y can be simply replaced with (S(y1),...,S(y,)) " in (4).

36



D Regarding Section 4.1

D.1 Lemmas

Lemma D1 (Convexity of ¢ and strong convexity of £)). Recall £(0) and €(0) defined in (4) and (6). £(0) is
a convex function with respect to 0 € R, and moreover, for any X\ > 0, £x(0) is a 2\-strongly convex function
with respect to § € R%.

Proof of Lemma D1. Easily observe that V{(f) = —LXT(Y — VA(X0)) and V2/(f) = 1 X TVZ2A(X0)X.
Note that V2A(v) = diag((%A(u)ni)?ﬂ) € R™*". Since it is a well-known property of exponential families
that A is convex, we know V2A(v) = 0. This implies V2¢(0) = 0, and thus, £(6) is convex. Moreover, £, (6)
is a 2\-strongly convex function for A > 0 because V20, (0) = V2(0) + 2\I,, = 2XI,,. O

D.2 Proof of Proposition 1
For any w € Rs>q and u,v € R? such that L, (u) < L, (v), this can be rewritten as

%(A(Xu) - A(Xv)) <yTX

= (u—v) +w( Il = llul)-

By combining this with Definition 2 of the prediction risk, we have
1
Risk(u) — Risk(v) = ~ (A(Xu) — A(Xv) — pd Xu+pd Xv)
X X X
YT (=) +w(flold = ulf) =g = (=) = " = (=) +w( |l - ul}),
n n n
which is equivalent to
. . XTe 2 2
Risk(u) — Risk(v) < <Tu - v> + w<||v||2 - ||u||2).

Therefore, as we know Ly (6) < Ly(6) for any 8 by the definition of 0, the above inequality suggests

A X 4 ~
Risk(0) — Risk(0) < 7 (0 = 0) + A( (1013 - 6]3)- (20)
Finally, we can prove that
e'X . 9 PN 1| XTel 9
_ — < ||l ==
= (0r— )+ (10113 — 10x13) < o | =<1 + 2013

from following observation: Using Young’s inequality, i.e., 2ab < ca? + b?/c for any ¢ > 0, we have

267X (8- 8) +- 20 (1813 - 18a1) = 2( ) (s — 6)+ 22 (1615 — 1 13)

LpXT 32 ) 2 2 ho112
<35 el +210x — 013 + 22 (1003 — 1013)

X’ 2 52 5 2 1.2
<35 el + A (2000 + 201013) + 221013 - 16:113)

n 2

X"
== NCIER

=5 | + ez

This completes the proof.
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D.3 Proof of Proposition 2
Since €; ~ sG(c), due to the Remark 1 of Hsu et al. (2012), we know

o

with the fact that | XX ||z = || X" X||r and tr(XX ") = tr(X " X). Applying this concentration inequality
to Proposition 1 gives us that, with probability at least 1 — e ™9,

2 g2 ~ ~ ~
P> 2 [(s) +2HEHF\/3+2HEHOP6D <o (21)

n

XTe
n

. A . . 1 2
— < —
RlSk(e)\) o ”lghf2<bRISk(9) )\CSG + 2\b 5

where we define )
Cu 1= = |tx(E) +2[[ )| 1 v3 + 2|2 ] (22)

for brevity. Therefore, when we choose A = 1/Csa/(2b), i.e., A as (7), the following holds with probability at

least 1 — e~ 9:

Risk(0) — ) ”i;hfg _, Risk(9) < 26/ Ciq.

D.4 Proof of Theorem 3
Recall that Assumption As4 says y;|x; ind- P;.

Ridge-penalized GLM with Gaussian distribution. Since ¢; = y; — p; ~ N(0,0;), clearly ¢; ~ sG(c?).
Thus €; ~ sG(03;,) With opist = max;e(,) 0;. Then the result directly comes from Proposition 2.

Ridge-penalized GLM with Bernoulli distribution. Since ¢; =y; — p; € [—pi, 1 — pi], we know
€; ~ sG(1/4). Then the result directly comes from Proposition 2.

Ridge-penalized GLM with Poisson distribution. In Poisson regression case, we need an additional
observation about a high-probability bound of Poisson random variables before we jump into the main proof.
For such an upper bound, we follow a similar process as Appendix A.4 of Lin et al. (2017). Define an event

E:={e<Dforalll <i<n}={y;—p; <Dforalll <i<n} where D =4(||ulo +1/3)logn.

Note that D > 1 for n > 3. Then we observe P(£¢) < 1/n from following:

P(£°) = P(Ji,y; — pi > D) < Zizlp(%‘ —wi >D) <nx1/n?=1/n.

The inequality (x) is elaborated more here. By the Poisson concentration result from Pollard (2017), for
X ~ Pois(u),

’ 1+ 2)log(1 + ) —
P(X —p>x) <exp <—;M¢Benn (i)) Vo >0, where tpenn(x)= (1+=z) (;g2(/2+ x) z

Moreover, when x > 1, (Really? Need to check this by my own, at lease once.)

z? x 1/2
enn | Z .
2" (u) pt1/3"

Therefore, we have the following for any 1 < ¢ < n with n > 3, which completes the proof of inequality (x):

1/2 1/2 N
>D)< -7 D)< — % D)=n"2
P(e; > D) _exp( Mi+1/3D) _exp( HM||oo+1/3D) n
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Now we are ready to finish the main proof. For any ¢ > 0, define an event

T 2 R R R
o= {7 > 22 e )+ 220, E +28),00] f where v = 25

Since we have observed P(£¢) < 1/n, we can upper bound P(Ss) as

P(S,) = P(S5 N E°) + P(S5 N E) < PES) + P(Sy|E)B(E) < 1/n + B(S5|€) < 1/m + e,

where the inequality (**) holds by following reasoning. Under the event &£, we know that {e;}7; are still
mutually independent and ¢; € [—u;, D). In other words, €; ~ sG(0?) with o; = (D + p;)/2 are mutually
independent under £. Then ¢; ~ SG(O’%OiS) holds for all 1 < i < n since opeis > ;. Therefore, due to Hsu
et al. (2012) as stated in (21), we have P(S;|€) < e™°, and this implies ().

Finally, due to an upper bound of P(S;) and Proposition 1, with probability at least 1 —1/n —e™°,

R 1
<k < inf <k L p 202
Risk(8y) < . Hl(ﬂhgles 9) + 2)\CP0 s T 2Xb

where we define Cpois == (03;,/1) [tr(f]) + QHEHF\/E + QHEA]HOpé] for brevity. Hence choosing A = v/Cpois/(2b)
gives us that, with probability at least 1 —1/n —e™°,

Risk(0y) < inf Risk(6) 4 2b\/Cpois.

0: 110]|2<b

D.5 Analysis on linear regression with closed form solution

This is regarding the analysis of prediction risk for linear regression solution 6= (XTX)"'XTY, when it is
well-defined. The risk in linear regression, following the definition (5), is: Risk(d) = 2 (—p" X6 + 1| X6]|3).

n

Meanwhile, since Y = X6, + ¢, we know that 6 =0+ (XTX)"1XTe, and thus X0 = X6y + ¢ where
H=X(XTX)"1XT is the projection matrix. Therefore,

o . 1 A 1ooag 1 1
Risk(0) — Risk(0o) = (= n" X(0 = 00) + 5|1 X013 — 5 1X003) = 5-[|Hel3-
By Remark 1 in Hsu et al. (2012), and since H' = H and H? = H, we know
P(\\Heng/a? > te(H) + 2y/tr(H)6 + 2||Huop5) <e .

We know that tr(H) = tr((X " X)X " X) =d and ||H||,p, = 1 since H is idempotent. Thus we finally obtain
O(c%d/n) high-probability bound: with probability at least 1 —e~?,

2
Risk(5) — Risk(8o) < ;Ln (d +2Vds + 25).

E Regarding Section 4.2

E.1 Proof of Proposition 3

Recall the basic inequalities (i) for gradient descent in Theorem 1 and (ii) for projected gradient descent that
follows the same form in Theorem 7, as explained in Section 4.2. These basic inequalities suggest that (i) for
any 6 € R? in gradient descent, or (ii) for any 6 € B4(b) in projected gradient decent, the following holds:

d)y , AT (ed
(OEY) + S0 — 0113 < 00) + 116113
since the initialization is set as Qégd) =0 € R%. By the definition of £ in (4), this is equivalent to

1 X A
~ (Ao — ACx0)) < v (0 — 0) + 5L (1013 — 052 — 0113).
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Following the same calculation as in the proof of Proposition 1,
. d : X [/ (ed Ar d
Risk(0")) - Risk(0) < ™ = (6 — 0) + 5L (Il113 — 10 - 013).

Since 26T%(9§§d) —-0) < iH%XTeH% + AT||9§§d) — 0|l by Young’s inequality, we conclude
1T 1 X e M

— =163

2\ H n 2 + 2 19112

Risk(0%Y) — Risk(6) <

E.2 Proof of Proposition 4

We need following auxiliary lemma for simpler computation.

Lemma E1. Given a function g(x) = ¢ + bx defined in (0,00) with a,b > 0. It is known that the function g
obtains its minimum at x* = /a/b. Fory € (0,00) such that 1/y = 1/z* 4+ d with d > 0,

9(y) — g(z*) = ad’y < ad

Proof of Lemma E1. Note that bax* = a/x*.

Also, ad’y < ad since

O

Now proceed to the main proof. Combining the high probability upper bound (21) with Proposition 3, we

have ) \
Risk(A¥Y) —  inf  Risk(d) < — C.q + 2Lp2,
isk(0r) =, inf _, Risk(0) < 53 Cha + 35

with the probability at least 1 — e™%, with Cyg defined in (22). Observe that the right hand side achieves the
minimum value of by/Csg when \ = Agd. Then we choose T as

1
T= in{t e N: (\*)" <Al = .
arg min{ (Aga) " <A} L]A;J

Note that the above minimum always exists since )\;1 =nT — o0 as T' — oo. Meanwhile, there is additional
discretization error due to the nature of gradient descent. Since it is clear that 0 < 1/Ar — 1/A%; <7, Lemma

E1 says that *

In conclusion, we proved that

nCsG

Risk(0Y) < . inf _ Risk(6) +b/Cic +

with the probability at least 1 — e,

E.3 Proof of Theorem 4

The theorem is proved straightforwardly from Proposition 4 once we prove Lp;st for each distribution. Note
that V£(0) = L X TV2A(X0)X. We have listed A(n) per distribution which was used in Section 4.

T n
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Gaussian distribution. A(¢) = £?/2 and A(€) = 1. Thus, A(X0) = I, and V2((#) = S. Therefore £ is
Amax (X)—smooth.

Bernoulli distribution. A(¢) = log(1 + ef) and A(€) =ef/(1+¢ef)? <1/4. Thus V2L(6) < ii, and
hence / is i/\max(Z)fsmoo‘ch.

Poisson distribution. A(£) = e and A(€) = e¢. For any 0 € By(b), easily check 2] 6 < ||z;]|2]|0]|2 = b|z:]|2.
Therefore V2A(X6) < exp(b- maxi<;<p ||2i||2) I, which implies that £ is Lpeis—smooth on By(b), where

Lpois = exp(b- maxy<i<p [|Zi]2) - Amax ().

F Regarding Section 5: Model aggregation

F.1 General results: Bregman-divergence-regularization and mirror descent

Here we state general results for Bregman-divergence-penalized GLM and early-stopped mirror descent on
GLM, not necessarily limited to KL-penalized GLM and early-stopped exponentiated gradient descent on
GLM. In other words, the following two propositions are general versions of Proposition 5 and 7.
Proposition 11 is analogous to Proposition 1 in ridge GLM. Note that taking ¢(6) = ||0|3/2 and z = 0
indeed retrieves the conclusion of Proposition 1. Proposition 12 is analogous to Proposition 3 in gradient
descent on GLM. Proposition 12 is analogous to Proposition 3 in early-stopped gradient descent on GLM.

Proposition 11 (Risk bound for Bregman-divergence-penalized GLM estimator). Assume that ¢ is a-strongly

conver with respect to the norm || - || on K for some a > 0. Denote || - ||« as the dual norm of || - ||. For any
A>0, z € K, and a reference point 6 € IC, the prediction risk of 9)\7(1,72 18 bounded by:
XT

Risk(f), 6,2) < Risk(6) + )

Proof of Proposition 11. By following the same step as the proof of Proposition 1, but using u,v € R% and
w € Rx>q such that £, 4 .(u) < 4, 4,.(v) instead, we have

%(A(Xu) — A(Xv)) < YT%(u —v)+ w(D¢(v, z) — Dy(u, z))

and thus .
X
Risk(u) — Risk(v) < <T€,u — v> + w(D¢(v, z) — Dy(u, z))
Therefore, as €A7¢7Z(éx7¢7z) < lx.¢,.(9) for any 6 due to the definition of HA,\@,z, we have

. X7 A
Risk(0,6,:) — Risk(8) < (=5,016,- — 0) +A(Do(6,2) = Dy(0r0,2.2))-

By the definition of dual norm and Young’s inequality, we obtain that

XT
( om0y <[5 =0
n
- X'e
<&, ||9A¢,Z—ZH+‘ =
XTe A
< —_— 0 z - )
< o |5+ 26 ]l

Plugging this inequality to the above inequality about the risk, and also using D¢(u v) > (a/2)||u — v||* by
a-strong convexity of ¢, we have

. 1A . X'e XTe QA R
Risk(05.-) — Risk(0) < | el | AP0 2) + A(S s — I~ D(Brss2)
2\ 2
XTe 2 XT
D
I n Ik a Dy(9,7) 2)\a +/\ o(6:2).
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Finally, by AM-GM inequality, we have

XTe XTe

Risk(6 4.-) — Risk(f) < (2/\a‘

+>\D¢(9 z)) - ‘

(0,2),

completing the proof. O

Proposition 12 (Risk bound for early-stopped mirror descent GLM estimator). Under Assumptions As2 and
As8, consider mirror descent iterates (2) initialized at z € K with a constant step size satisfying n € (0, «/L].
Let 0 () pe the T-th iterate. Then, for any T € N and 6 € IC,

XT

Risk(69"") — Risk(6) <

5 ATQ‘ + ArDy (0, 2). (23)

Proof of Proposition 12. The proof is similar to that of Proposition 3. Applying the basic inequality of
Theorem 2, we obtain that for any 6 € K:

Similar to the proof of Proposition 11, we deduce that

XTe

Rlsk(H(de)) — Rlsk(@) < < , agﬂmd) — 9> + At (D¢(9, Z) - D¢(9’ 9%md))>

xT m m
<‘ 6‘ He} d)—6H+/\T (Do6,2) — D, (0,65"))
n *
1 || XTe| M0 o) a)
< pln) eH Ar (Dy(0,2) = Dy (6,05
T2 ra|| n H 27 (D0, 2) = Dy )
1 XTe
< A Dy (6
>~ 2)\TO& . + T d)( 72)7
completing the proof. O
F.2 Proof of Theorem 5
This is a special case of Proposition 11. Note that || - ||oo is the dual norm of || - ||; and KL divergence is
1-strongly convex with respect to || - |1 by Pinsker’s inequality. Therefore, Proposition 11 suggests that, for

any A > 0 and any 0 € Ay,

A . L)X Te2
Risk(0) - Risk(0) < 5 H + 2ADxer, (6, 7).
n e
F.3 Proof of Proposition 6
Recall that Proposition 5 gives an upper bound
. XTe
Risk(fy) — Risk(9) —|— 2ADxkry, (0, 7).
Now consider sub-Gaussian noise ¢; ~ sG(c). Write X = (2;;);; and v:= X "e = (v1,...,v4)". Then

vj = >, ;€6 and E[v;] = 0 due to the mean-zero property of €;. Check that v; ~ sG(c||X.;|2) due to the

following: for any o > 0,
a2
20%) = exp (21X, 30?)

E{exp(cwj)} = ]E{exp(ag:lxij el)} :fll [exp ax;j€; ] Hexp(

42



where X.; denotes the j-th column of X. Then, by the concentration inequality of the maximum of possibly
dependent sub-Gaussian random variables, we know that

1P>(HXT€||Oo = max [v;] < o max [|X,/|2/2(log(2d) + 5)) >1-e°.

1<5<d

Since maxi<;<q || X.;|l2 < v/n, we have
1 2(log(2d) + 6
P (|X1|oo <o (g()*’> S1-e . (24)
n n

Therefore, with probability at least 1 — e =9,

. 202 (log(2
Risk(9y) — inf  Risk(6) < w

e o [log(2d) + 67
nb

we know the following holds with probability at least 1 — e~°:

+ 2Xb.

Thus, when we choose

Risk(Gy) —  inf  Risk(0) < 4o/ 208D +9),
0: Dk (0,7)<b n

This concludes the proof of Proposition 6.

F.4 Proof of Theorem 5

opist has already been discussed in Theorem 3. Thus, the result directly comes from Proposition 6.

F.5 Proof of Proposition 7

This is a direct consequence of Proposition 12, since the KL divergence is 1-strongly convex with respect to
the || - ||1-norm, whose dual norm is || - |-

F.6 Proof of Proposition 8

Recall that we have already assumed maxi<;<q||X.;|l2 < v/n. Thus, we can use the high-probability upper
bound for 1|/ X Te[|o obtained in (24). Plugging in this upper bound to Proposition 7, we have that, with
probability at least 1 — e ™9,

log(2d) + 0)

2
Risk(0%Y) = inf  Risk(h) < it

Arb. 25
0: Dk1.(0,7)<b nAr tAr ( )

Of course, if T =1/ /\ngn is an integer, then Ap = )\ng, and the desired excess risk bound follows. Otherwise,
by taking T'= [1/(A%,qn)] as in the proposition statement, we know that

1 1

S S
/\egd )\T )\egd

+ 7.

This further implies the following bound on the discretization error

a?(log(2d) + 0) b(log(2d) + 0)

+ Arb — 20
nAr n
2
1 1 A2 e
=W\ At | — — — <PA3 4 < b—=
egd ( )\T )\egd ) esd L2Dist

_ 03t ~ (log(2d) + 5)3/?
By w0

This completes the proof of Proposition 8.
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F.7 Proof of Theorem 6

Based on Proposition 8, it suffices to verify that for each of three distributions () to (#i¢), the loss function
£(9) is Lpist-smooth with respect to || - |1 on Ag. Therefore, similar to the proof of Theorem 4, it suffices to
verify that

1 <. .
IV260) s = |- - Ale] O)asa] < Lpi, V€A,
n i1 — 00

Gaussian distribution. A(¢) = 1. Therefore,

1 < .
H— Z Alz) 0)zsz]
i

where the last inequality holds due to the assumption max;<j<q || X.;||2 < v/n.

n

a 1 1
e [Zll1500 = Eﬂéf[i;]( e QUZQJ E??XHX I3 <1,

Bernoulli distribution. A(¢) = e£/(1 + €£)? € [0,1/4], hence

where the last inequality holds due to the assumption max;<j<q || X.;ll2 < v/n.

»Jk\r—'

1
18 = = X,
< 7180 4nje[d§j f = g max 1[5 <

Poisson distribution. A(f) = ef. Therefore, for any 0 € Ag:
len:zi(xTo)mT < Hliexp(nxinoo)xizT
i ' ' - inie z

This completes the proof for (i) to (7).

=— maxZexp || oo )

1—o00 1—o00

G Regarding Section 6: Random model selection

G.1 Proof of Proposition 9
By definition of 6y, for any 6 € P(B):
E, g, [Bn(B)] = Eg~o[Rn(B)] < A(Dkr(0,7) — Diw(0x,7)).
Meanwhile, defining a measure v := 6 — 6 over B,
By, [R(E)] ~ Banol RO = [ ~ROW3) = [ [Rnl8) = ROIw(@8) + [ ~Ro()u(as).

Therefore, by the above inequality,
Ej5, [R(8)] — EsnoR(B)] < /B [R(8) — R(8)]¥(dB) + (D (6, ) — Dicr,(6, 7))

SHRL—RHLN(B /12 5) + A(Dkr (6, 7) — D, (6, 7))

IN

| =R _ 16~ + |Ra—B|| 7=l

Lo (B)
+ A(Dke(0,7) — DKL(éA»W))

Lee(B)

IN

1 fay 2 A 9 2 )\ é 2
XHR"_RHLoo(B)+§H —7T||L1(B)+§H7T— Mz
+ A(DkL(0,7) — DKL(éMﬂ'))

14 2
—||Rn — 22Dk (6, ),
)\HR RHLoc(B) * e (6,7)

IN
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where the penultimate inequality uses Young’s inequality and the last inequality follows from Pinsker’s
inequality. This completes the proof.

G.2 Proof of Proposition 10

Recall that exponentiated gradient descent is a special case of mirror descent. Due to the basic inequality for
mirror descent in Theorem 2, we have

By gteet (R (8)) = EgnolRa(B)] < Ar(Dke(6,m) — D (60, 657)).
Similar to the proof of Proposition 9, defining a measure v := 6 — 9(; &) over P(B),
B, et (R(9)) ~ Eanal RO)| = [ ~R3Ww(8) = [ [Rul®) ~ ROv(a8) + [ ~Ra(8)p(d9).
B B B

Therefore, by the above inequality,

E, s [R(9)] — Es[R(P)] < /B [Ra(8) = R(8)](dB) + Ar(Dxe (6,7) — Dk (0, 05"))

< R = ] W) + A (Drca(0,7) = Dica 0,0575)
RIPS A s »
- EHR?L B HL°°(6> + 5 I o) + Az (Dice(0,7) = Dice (6, 0757))
1 4 2
< g [Br = e+ A P00
_2)\TH L°°(B)+ rDxL(0, )

which completes the proof.

H Regarding Section 7: Complements for Theorem 7 and 8

H.1 Proximal gradient descent

Lemma H1. Consider prozimal gradient descent with iterates (18). Then, for any 6 € R% and n > 0,
Gy(0) € Vg(0) + 0h(0 — nG(0))

where Oh represents the subgradients of h.

Proof of Lemma HI1. Recall the definition of the proximal operator and G, () = %(0 — Prox,, (0 —nVyg(9)).
By the first order optimality condition for the proximal operator,

0 € (Prox, (6= nVg(6)) = (6 = 1¥9(0))) +nIh(8 1V g(6),

which means

0e (vg(e) - Gn(9)> + Oh(0 — v g(6)).
This concludes the proof. O
Lemma H2. For a composite function f = g+ h with convex differentiable g, and convex but potentially
non-differentiable h, suppose one of the following holds:
(i) g is L-smooth in a convex set C C RY, with step sizes n; € (0,1/L];
(i) g is zero (i.e., f = h), with no constraint on n > 0.

Then, respectively, for any z € R and
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(i) for any 6 € C such that § — nG,(0) € C;
(i3) for any 6 € R?,
the following holds, respectively:
(i) : (6 =nGy(0)) < F(2) +(G(6),6 = 2) = Z[G(0) 3,
(ii)!f(9— n(0)) < f(2) +(Gy(0),0 — 2) — nl| Gy (O)13.

Proof of Lemma H2. (i) By the L-smoothness of g over C,

9(0 = nGy(0)) < g(0) + (Vg(0), —nGy(0)) + anGn(G)Ili

Moreover, from the convexity of g over R%, we know g(6) < g(z) + (Vg(#),0 — z) for any 2z € R?. Combining
these two inequality gives that

90 —nGy(0)) < g(z) + (Vg(0),0 — 2) + (Vg(0), —nG,(0)) + %HnGn(@)llg
<9(2) + (Vg(0),0 = 2) + (Vg(0), =G, (0)) + gIIGn(9)II§~ (-n<1/L.)

Meanwhile, from Lemma H1, we know G,(0) — Vg(8) € 0h(6 — nG,(#)). Thus, by the definition of the
subgradient,

h(0 —nGy(0)) < h(z) = (Gy(0) = Vg(0), 2 — (6 — G, (0)))
= h(2) + (Vg(0), 2 = 0 + Gy (0)) + (Gy(0),0 — 2) — nl| Gy (O)]I5.
)

Therefore, as f(0 — nG,(0)) = g(0 — nG,(9)) + h(6 — nG,(0)), combining the upper bounds on g and h gives
us the following result, which concludes the proof for (i):

J(0 = 1G,(6)) < g(=) + h(=) + (G (6),0 — 2) = TG, (6) 3.

(i) Note that g = 0 implies that g is L-smooth over R? with any L > 0. Recall the upper bound on
h(60 —nGy(8)) in the proof of (i). As g = 0, note that Vg(#) = 0 for any 6. Thus, the intermediate observation
about h(0 —nG,(0)) from the proof of (i) gives that

h(0 —1Gy(9)) < h(z) +(Gy(0),0 — 2) — 1l Gy (O)]13.

H.2 NoLips Mirror descent

Lemma H3 (Extended descent lemma for NoLips; Lemma 1 in Bauschke et al. (2017)). Under Assumption
As6, for any u,v € K Nint(Q),

f(u) < f(0) +(Vf(v),u—v) + LDy(u,v).

Proof of Lemma H3. Due to the convexity of Lo — f on K Nint(Q2), we know that

(LVg(v) = V[(v),u—v) < (Lp(u) — f(u)) — (Lo(v) — f(v)).

Rearranging this concludes the proof:

F(w) < F(0) + (), u=0) + L(6(u) = 6(v) = (9(v), 1= v)) = f(v) + (f (), u— v) + LDg(u,v).
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I Regarding Section 8: Complements for Experiments details

Lemma I1 (Regularized objective function evaluated at GA,\) For a convex function f : R? — R, define
0y = argmin f(0) + M|0||3 for A > 0. Then a function g : [0,00) — R where g(\) = f(0)) + N|0x]|3 is a
non-decreasing function of A > 0.

Proof of Lemma I1. Choose any A, < X, in [0,00). By definition, g(As) = f(0x,) + Xs|[0x. |12 < f(0r,) +
s, ]13- Therefore,

9(A) = gAs) = F(Ox,) + 2ell0x, 13 — 9(As) = (Ao = As)ll6, 13 > 0,

whose equality holds if and only if 6 N, = 0. O

Optimization details: Implicit regularization. For iterative algorithms, learning rate schedules are
used to cover small 7 with high resolution and to reach large 7 with less iterations at the same time. Table
2 and 3 summarize the learning rate schedules used in each combinations of GD and EGD for (i) three
GLMs and (ii) underparamterized or overparametrized regime. The schedule {(n(?, T()}%_| means that the

learning rate n*) is used for T} iterations, then n(® is used for the next T(? iterations, and so on.

GD
GLM underparam. overparam.
(n,d) = (200, 20) (n,d) = (100, 200)
Linear | {(107%,10%), (1073,10%), (1072,10%)} same as underparm.
Logistic same as Linear same as underparm.
Poisson same as Linear {(107%,10%), (2 x 107%,2 x 10%), (5 x 107%,2 x 10%)}

Table 2: GD learning rate schedules.

EGD
GLM underparam. overparam.
(n,d) = (200, 20) (n,d) = (30, 60)
Linear | {(107%,10%),(1073,10%),(1072,10%), (1071,10%)]} | same as underparm.
Logistic same as Linear same as underparm.
Poisson same as Linear same as underparm.

Table 3: EGD learning rate schedules.

Optimization details: Explicit regularization. In both GD and EGD, for all (i) three GLMs and
(ii) underparamterized or overparametrized regime, we solved 500 ridge- or KL-regularized optimization
problems with different regularization parameter A, where \’s are log-evenly spread through [107%,10%].
We used scipy.optimize.minimize function from SciPy library, where GD used L-BFGS-B solver and
EGD used SLSQP solver. For the options for each solver, the GD always used (maxiter, ftol, gtol) =
(2 x 10%, 10715, 107®). The EGD used different options per GLM. Linear regression used (maxiter, ftol,
eps) = (4 x 10%, 2 x 10714, 2 x 1078) as a default, while used more conservative option of (maxiter, ftol,
eps) = (10°, 10, 1078) for A € (1072, 10), as we observed the optimization does not converge in those A.
Logistic regression used (maxiter, ftol, eps) = (4 x 10%, 10713, 10~7). Poisson regression used (maxiter, ftol,
eps) = (6 x 104, 10714, 1078).
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